
Quantum Model Learning Agent
Documentation

Release 1

Brian Flynn, Antonio Andreas Gentile, Raffaele Santagati

Oct 27, 2021

CONTENTS

1 Glossary 1

2 Overview 3
2.1 Models . 3
2.2 Model Training . 4
2.3 Model Comparison . 4
2.4 Structure . 4
2.5 Outputs . 5
2.6 User Interface . 5

3 User Guide 7
3.1 Quantum Model Learning Agent . 7
3.2 Exploration Strategy . 8
3.3 Models . 10

3.3.1 Construction . 10
3.3.2 Classes . 10
3.3.3 Training . 11
3.3.4 Comparisons . 11
3.3.5 Storage . 11

3.4 Modular functionality . 12
3.4.1 Probes . 13
3.4.2 Experiment design heuristic . 13
3.4.3 QInfer interface . 13
3.4.4 Prior distribution . 14
3.4.5 Latex name mapping . 14

3.5 Output and Analysis . 14
3.6 Launch . 15

3.6.1 Redis server . 17

4 API Reference 19
4.1 Quantum Model Learning Agent . 19

4.1.1 Manager class . 19
4.2 Logistics . 28

4.2.1 User controls . 28
4.2.2 Database framework . 28
4.2.3 Model Generation . 29
4.2.4 String to matrix processing . 29
4.2.5 Initialising Exploration Strategy . 29
4.2.6 Trees and branches . 30
4.2.7 Parameter definition . 31

i

4.2.8 Redis . 32
4.2.9 Logging . 33

4.3 Models . 33
4.3.1 Model for training . 33
4.3.2 Model for comparisons . 36
4.3.3 Model for storage . 37

4.4 Implementation . 38
4.4.1 Model learning . 38
4.4.2 Model comparison . 39

4.5 Exploration Strategies . 40
4.6 Modular functionality . 44

4.6.1 Experiment Design Hueristics . 44
4.6.2 Expectation Values . 45
4.6.3 Prior probability distributions . 46
4.6.4 QInfer Interface . 46
4.6.5 Latex name mapping . 49

5 Applications 51
5.1 NV centre characterisation . 51

5.1.1 Greedy search . 51
5.1.2 Genetic algorithm for spin bath . 52

5.2 Genetic Algorithms . 54
5.2.1 Genetic Exploration Strategy . 57

6 Tutorial 59
6.1 Installation . 59
6.2 Custom exploration strategy . 61
6.3 Analysis . 63

6.3.1 Model analysis . 63
6.3.2 Instance analysis . 63
6.3.3 Run analysis . 65

6.4 Parallel implementation . 68
6.5 Customising exploration strategies . 71

6.5.1 Greedy search . 71
6.5.2 Tiered greedy search . 74

7 Biblography 79

Bibliography 81

Python Module Index 83

Index 85

ii

CHAPTER

ONE

GLOSSARY

Bayes factor Statistical measure of performance between two models at explaining the same dataset

BF

See also:

Bayes factor

EDH

ES

See also:

Exploration Strategy

ET

See also:

Exploration Tree

Experiment Design Heuristic Mechanism to design informative experiments to perform upon the system from which
the model training can learn. Defined in Experiment design heuristic.

Exploration Strategy The mechanism by which a tree grows, specifying new models to consider, when to stop
considering new models, how to remove models, etc.

See also:

Defined in Exploration Strategy.

Exploration Tree Unique tree associated with an individual Exploration Strategy.

See also:

Defined in Structure.

global champion Single model favoured by Quantum Model Learning Agent as the strongest candidate to represent
the system.

Instance A single implementation of QMLA.

See also:

Defined in Structure.

Probe Input state evolved by both the candidate model and system to draw comparisons between them. Defined in
Probes.

1

Quantum Model Learning Agent Documentation, Release 1

QHL

See also:

Quantum Hamiltonian Learning

QLE

See also:

Quantum Likelihood Estimation

QMLA

See also:

Quantum Model Learning Agent

Quantum Hamiltonian Learning Algorithm for learning the parameters of a given model.

Quantum Likelihood Estimation Algorithm used to perform Bayesian inference during QHL

Quantum Model Learning Agent Algorithm/framework for finding model of quantum system.

Run A collection of instance s. Note that for a run, all instances must target the same system .

See also:

Defined in Structure.

Run Results Directory Directory to which results are stored for an individual run. Consists of results files for all the
instance s in the run, as well as analyses on the model, instance and run levels.

System The target system, i.e. underlying model. In simulation, this is used to generate the expectation values against
which likelihood estimation occurs. In experiments, the form of the system is unknown, but data obtained from
experiments are used in the likelihood estimation instead.

True Model

See also:

system

2 Chapter 1. Glossary

CHAPTER

TWO

OVERVIEW

Quantum Model Learning Agent (QMLA) is a machine learning protocol for the characterisation of quantum mechan-
ical systems and devices. It aims to determine the model which best explains observed data from the system under
study. It does this by considering a series of candidate models, performing a learning procedure to optimise the perfor-
mance of those candidates, and then selecting the best candidate. New candidate models can be constructed iteratively,
using information gained so far in the procedure, to improve the model approximation.

QMLA can operate on simulated or experimental data, or be incorporated with an online experiment. This document
provides details on QMLA’s mechanics, and provides examples of usage. Particular attention is paid to the concept
and design of Exploration Strategies (ES), the primary mechanism by which users ought to interact with the software.
Custom ES can be developed and plugged into the QMLA framework, in order to target systems, run experiments and
generate models according to the user’s requirements. Several aspects of the framework are modular, allowing users
to select the combination which suits their requirements, or easily add functionality as needed.

This chapter briefly introduces the core concepts at a high level; thorough detail can be found in User Guide.

2.1 Models

Models encapsulate the physics of a system. We generically refer to models because QMLA is indifferent to the
formalism employed to describe the system. Usually we mean Hamiltonian models, although QMLA may also be
used to learn Lindbladian models.

Models are simply the mathematical objects which can be used to predict the behaviour of a system, uniquely rep-
resented by a parameterisation. Each term in a model is really a matrix corresponding to some physical interaction;
each such term is assigned a scalar parmeter. The total model is a matrix, which is computed by the sum of the terms
multiplied by their parameters. For example, 1-qubit models can be constructed using the Pauli operators 𝜎̂𝑥, 𝜎̂𝑦, 𝜎̂𝑧 ,
e.g. 𝐻̂𝑥𝑦 = 𝛼𝑥𝜎̂𝑥 + 𝛼𝑦𝜎̂𝑦 . Then, 𝐻̂𝑥𝑦 is completely described by the vector 𝛼 = (𝛼𝑥, 𝛼𝑦), when we know the
corresponding terms 𝑇 = (𝜎̂𝑥, 𝜎𝑦). In general then, models are given by 𝐻̂(𝛼) = 𝛼 · 𝑇 .

In the Hamiltonian (closed) formalism, terms included in the model correspond to interactions between particles in the

system. For example, the Ising model Hamiltonian on 𝑁 sites (spins), 𝐻̂⊗𝑁 = 𝐽
𝑁−1∑︀
𝑖=1

𝜎̂𝑧
𝑖 𝜎̂

𝑧
𝑖+1, includes terms 𝜎̂𝑧

𝑖 𝜎̂
𝑧
𝑖+1

which are the interactions between nearest neighbour sites (𝑖, 𝑖+ 1).

QMLA reduces assumptions about which interactions are present, for instance by considering models 𝐻̂⊗5 and 𝐻̂⊗8,
and determining which model (5 or 8 spins) best describes the observed data. Moreover, QMLA facilitates considera-
tion of all terms independently, e.g. whether the system is better described by a partially connected Ising lattice 𝐻̂1 or
a nearest-neighbour connected Ising chain 𝐻̂2:

𝐻̂1 = 𝛼1𝜎̂
𝑧
1 𝜎̂

𝑧
2 + 𝛼2𝜎̂

𝑧
1 𝜎̂

𝑧
3 + 𝛼3𝜎̂

𝑧
1 𝜎̂

𝑧
4

𝐻̂2 = 𝛽1𝜎̂
𝑧
1 𝜎̂

𝑧
2 + 𝛽2𝜎̂

𝑧
2 𝜎̂

𝑧
3 + 𝛽3𝜎̂

𝑧
3 𝜎̂

𝑧
4

3

Quantum Model Learning Agent Documentation, Release 1

Then, models exist in a model space, i.e. the space of all valid combinations of the available terms. Any combination
of terms is permissible in a given model. QMLA can then be thought of as a search through the model space for the
set of terms which produce data that best matches that of the system. Since these terms correspond to the physical
interactions affecting the system, the outcome can be thought of as a complete characterisation.

2.2 Model Training

Model traning is the process of optimising the parameters 𝛼 of a given model against the system’s data. The model
which is being learned does not need to be the true model; any model can attempt to describe any data. A core
hypothesis of QMLA is that models which better reflect the true model will produce data more consistent with the
system data, when compared against less-physically-similar models.

In principle, any parameter-learning algorithm can fulfil the role of training models in the QMLA framework, but in
practice, Quantum Hamiltonian Learning (QHL) is used to perform Bayesian inference on the parameterisation, and
hence attempt to find the optimal parameterisation for each model [WGFC13a], [WGFC13b], [GFWC12]. This is
performed using [QInfer].

2.3 Model Comparison

Two candidate models 𝐻̂1, 𝐻̂2, having undergone model training, can be compared against each other to determine
which one better describes the system data. Bayes factor (BF) provide a quantitative measure of the relative strength
of the models at producing the data. We take the BF 𝐵(𝐻̂1, 𝐻̂2) between two candidate models as evidence that one
model is preferable. Evidence is compiled in a series of pairwise comparisons; models are compared with a number
of competitors such that the strongest model from a pool can be determined as that which won the highest number of
pairwise comparisons.

2.4 Structure

QMLA is structured over several levels:

Models are individual candidates (e.g. Hamiltonians) which attempt to capture the physics of the system.

Layers/Branches: models are grouped in layers, which are thought of as branches on exploration trees.

Exploration trees are the objects on which the model search takes place: we think of models as leaves on branches
of a tree. The model search is then the effort to find the single leaf on the tree which best describes the system.
They grow and are pruned according to rules set out in the exploration strategy.

Exploration Strategies (ES) are bespoke sets of rules which decide how QMLA ought to proceed at each step. For
example, given the result of training/comparing a previous set of models, the ES determines the next set of
candidate models to be considered.

Instance: a single implementation of the QMLA protocol, whether to run the entire model search or another subroutine
the framework. Within an instance, several exploration trees can grow independently in parallel: we can then
think of QMLA as a search for the single best leaf among a forest of trees, each of which corresponds to a unique
exploration strategy.

Run many instances which pertain to the same problem. QMLA is run independently for a number of instances,
allowing for analysis of the algorithm’s performance overall, e.g. that QMLA finds a particular model in 50% of
100 instances.

4 Chapter 2. Overview

Quantum Model Learning Agent Documentation, Release 1

2.5 Outputs

QMLA automatically performs a series of analyses and produces associated plots. These are stored in a unique folder
generated for the run upon launch: this folder is specified by the date and time of the launch and is located, relative to
the QMLA main project directory in, e.g., launch/results/Jan_01/12_34. These are detailed in Output and
Analysis.

2.6 User Interface

In order to tailor QMLA to a user’s needs, they must design a bespoke Exploration Strategy. That is, the user must
write a class building upon and inheriting from ExplorationStrategy , encompassing all of the logic required to
achieve their use case, for example by incorporating a genetic algorithm within the method called upon for constructing
new candidates, generate_models(). Then, that class must be available to get_exploration_class(),
by ensuring it is included in one of the import statements in qmla/exploration_strategies/__init__.
py. Finally, instruct QMLA to use that ES for a run in the launch script (see Launch). These steps are laid out in full
in section_tutorial.

2.5. Outputs 5

Quantum Model Learning Agent Documentation, Release 1

6 Chapter 2. Overview

CHAPTER

THREE

USER GUIDE

3.1 Quantum Model Learning Agent

The class which controls everything is QuantumModelLearningAgent. An instance of this class is used to run
one of the available algorithms; many independent instances can operate simultaneously and be analysed together (e.g.
to see the average reproduction of dynamics following model learning). This is referred to as a run The QMLA class
provides methods for each of the available algorithms, as well as routines required therein, and methods for analysis
and plotting. In short, the available algorithms are

Quantum Model Learning Agent complete model search

run_complete_qmla()

Quantum Hamiltonian Learning just run the parameter optimisation subroutine. Runs on the model set as
true_model within the ES.

run_quantum_hamiltonian_learning()

Multi-model quantum Hamiltonian learning just run the parameter optimisation subroutine. Runs on
several models independently; the models are set in the list qhl_models within the ES.

run_quantum_hamiltonian_learning_multiple_models()

The primary function of the QuantumModelLearningAgent class is to manage the model search. Models are
assigned a unique model_ID upon generation. QMLA considers a set of models as a layer or a BranchQMLA.
Models can reside on multiple branches. For each ES included in the instance, an Exploration Tree (ET) is built. On
a given tree, the associated ES determines how to proceed, in particular by deciding which models to consider. The
first branch of the tree holds the initial models 𝜇1 = {𝑀1

1 , . . .𝑀
1
𝑛} for that ES. After the initial models have been

trained and compared on 𝜇1, the ES uses the available information (e.g. the number of pairwise wins each model has)
to construct a new set of models, 𝜇2 = {𝑀2

1 , . . .𝑀
2
𝑛}. Subsequent branches 𝜇𝑖 similarly construct models based on

the information available to the ES so far.

Each BranchQMLA is resident on its associated ES tree, but the branch is also known to QMLA. Branches are assigned
unique IDs by QMLA, such that QMLA has a birds-eye view of all of the mdoels on all branches on all trees (in general
there can be multiple ES entertained in a single instance). Indeed, a useful way to think of QMLA is as a search across
a forest consisting of 𝑁 trees, where each leaf is a unique model, and there can be multiple leaves per branch and
multiple branches per tree, with the ultimate goal of identifying the single best leaf for describing the system.

When QMLA finds that it has completed a layer, it is ready for the next batch of work: it checks whether the ET has
finished growing, in which case it begins the process of nominating the champion from that ES. Otherwise, QMLA
calls on the ES (via the ET) to request a set of models, which it places on its next branch, completely indifferent to
how those models are generated, or whether they have been learned already. This allows for completely self-contained
logic in the ES: QMLA will simply learn and compare the models it is presented - it is the responsibility of the ES
to interpret them. As such, the core QMLA algorithm can be thought of as a simple loop: while the ES continues to
return models, place those models on a branch, learn them and compare them. When all ES indicate they are finished,

7

Quantum Model Learning Agent Documentation, Release 1

nominate champions from each ET; compare the champions of each tree against each other, and thus determine a
global champion.

3.2 Exploration Strategy

Exploration Strategies (ES) are the engine of QMLA. The ES specifies how QMLA should proceed at each stage,
most importantly by determining the next set of models for QMLA to test. These are the primary mechanism by
which most users should interface with the QMLA framework: by designing an ExplorationStrategy which
implements the user-specific logic required. In particular, each ES must provide a generate_models() method
to construct models given information about the previous models’ training/comparisons. User ES classes can be used
to specify parameters required throughout the QMLA protocol. These are all detailed in the setup methods of the
ExplorationStrategy class; users should familiarise themselves with these settings before proceeding.

At minimum, a functional ES should look like:

class UserExplorationStrategy(qmla.ExplorationStrategy):
def __init__(

self,
exploration_rules,
true_model=None,

**kwargs
):

super().__init__(
exploration_rules=exploration_rules,
true_model=true_model,

**kwargs
)
self.true_model = 'pauliSet_1_x_d1+pauliSet_1_y_d1'

An example of ES design, including a simple greedy-addition model generation method as well as seeting several
parameter settings, is:

from qmla.shared_functionality import experiment_design_heuristics as edh

class UserExplorationStrategy(qmla.ExplorationStrategy):
def __init__(

self,
exploration_rules,
true_model=None,

**kwargs
):

super().__init__(
exploration_rules=exploration_rules,
true_model=true_model,

**kwargs
)
Overwrite true model
self.true_model = 'pauliSet_1_x_d1+pauliSet_1_y_d1'

Overwrite modular functionality
self.model_heuristic_subroutine = edh.VolumeAdaptiveParticleGuessHeuristic

Overwrite parameters
self.max_num_qubits = 2
self.num_probes = 10

(continues on next page)

8 Chapter 3. User Guide

Quantum Model Learning Agent Documentation, Release 1

(continued from previous page)

self.qinfer_resampler_a = 0.95

User specific attributes (not available by default in QMLA)
self.model_base_terms = [

"pauliSet_1_x_d2",
"pauliSet_1_y_d2",
"pauliSet_1_z_d2",
"pauliSet_2_x_d2",
"pauliSet_2_y_d2",
"pauliSet_2_z_d2",

]
self.search_exhausted = False

def generate_models(
self,
model_list,

**kwargs
):

if self.spawn_stage[-1] == None:
Use spawn_stage for easy signals between calls to this method
e.g. to alter the functionality after some condition is method

self.spawn_stage.append("one_parameter_models")
return self.model_base_terms

previous_champion = model_list[0]
champion_terms = previous_champion.split("+")
nonpresent_terms = list(set(self.model_base_terms) - set(champion_terms))
new_models = [

"{}+{}".format(previous_champion, term) for term in nonpresent_terms
]

if len(new_models) == 1:
After this, there will be no more to test,
so signal to QMLA that this ES is finished.
self.search_exhausted = True

return new_models

def check_tree_completed(
self,
spawn_step,

**kwargs
):

r"""
QMLA asks the exploration tree whether it has finished growing;
the exploration tree queries the exploration strategy through this method.
"""
return self.search_exhausted

In order to implement a new ES, QMLA searches in the directory qmla/exploration_strategies, so the
user’s ES must be import ed to the qmla/exploration_strategies/__init__.py. QMLA retrieves the
ES through calls to the function get_exploration_class(), by searching for the ES specified in the Launch
script. For example, the launch script (e.g. at qmla/launch/local_launch.sh) should be updated to call the
user’s ES, e.g.

3.2. Exploration Strategy 9

Quantum Model Learning Agent Documentation, Release 1

#!/bin/bash

###############
QMLA run configuration
###############
num_instances=1
run_qhl=0
experiments=500
particles=2000

###############
Choose an exploration strategy
###############

exploration_strategy='UserExplorationStrategy'

A complete step-by-step example of implementing custom ES is given in section_tutorial. Users should ensure they
understand the options for launching QMLA as outlined in Launch.

Each ES is assigned a unique Exploration Tree (ET), although most users need not alter the infrastructure of the ET or
QMLA.

3.3 Models

3.3.1 Construction

Models are specified by a string of terms separated by +, e.g. pauliSet_1_x_d1+pauliSet_1_y_d1. Model
names are unique and are assigned a model_id upon generation within QuantumModelLearningAgent :
QMLA will recognise if a model string has already been proposed and therefore been assigned a model_id, rather
than retraining models which is computationally expensive. The uniqueness of models is ensured by the terms be-
ing sorted alphabetically internally within the string (e.g. pauliSet_1_x_d1+pauliSet_1_y_d1 instead of
pauliSet_1_y_d1+pauliSet_1_x_d1), but note QMLA ensures this internally so users do not need to enfore
it in their generate_models().

The strings are processed into models as follows. By separating models into their terms (model_name.
split('+')), the cardinality (number of terms, 𝑛) is found. An 𝑛− dimensional Gaussian is con-
structed to represent the parameter distribution for the model; individual parameters can be specified in
gaussian_prior_means_and_widths of _setup_model_learning(). The terms are then processed
into matrices. A number of String to matrix processing functions are available by default; new processing functions
can be added by the user but must be incorporated in process_basic_operator() so that QMLA will know
where to find them.

3.3.2 Classes

Models are central to the QMLA framework so it sensible to identify their core functionality so we can design software
to facilitate them. In particular, there are three forms of classes which each depict models, but fulfil different roles. In
brief, these classes are

ModelInstanceForLearning Class used for the training of individual models.

ModelInstanceForComparison Class used for comparing models which have already been trained

ModelInstanceForStorage Class retained by QuantumModelLearningAgent, storing the results of the
model’s training and comparisons.

10 Chapter 3. User Guide

Quantum Model Learning Agent Documentation, Release 1

We next detail each of these roles of the model concept.

3.3.3 Training

QMLA relies on a subroutine for training individual candidate models: it is imperative that a given candidate is opti-
mised against the system, as otherwise it might appear as a relatively weak candidate compared with its potential. In
principle, any parameter learning subroutine can fulfil this role in QMLA, such as Hamiltonian tomography or using
neural networks for parameter estimation. The in-built facility for this subroutine is quantum Hamiltonian Learning
(QHL). We do not descibe the QHL protocol here but readers can refer to [WGFC13a], [WGFC13b] for details.

ModelInstanceForLearning is a disposable class which instatiates indepden-
dently from QuantumModelLearningAgent. It trains a given model via qmla.
remote_learn_model_parameters(), performs analysis on the trained model, summarises the outcome of
the training and sends a concise data packet to the database, before being deleted. The model training refers to quantum
Hamiltonian learning, performed in conjunction with [QInfer], via update_model(). Importantly, QMLA trains
models simply by calling qmla.remote_learn_model_parameters(): this function acts emph{remotely}
and is therefore independent, allowing for multiple instance of the function and ModelInstanceForLearning
to run simultaneously. As such, this class mechanism allows for emph{parallel processing} within QMLA, enabling
speedup proportional to the number of processes available (for the model training stages).

3.3.4 Comparisons

Like the training subroutine, in principle QMLA can operate with any model comparison subroutine, but in practice
we use Bayes factors (BF). This is a quantity which is used to distinguish between models.

ModelInstanceForComparison is a disposable class which reads the redis database to retrieve information
about the trainng of the given model_id. It then reconstructs the model, e.g. based on the final estimated mean
of the parameter distribution. Then, to compare models, remote_bayes_factor_calculation() interfaces
two instances of ModelInstanceForComparison such that each model is exposed to the opponent’s experi-
ments for further updates, such that the two models under consideration have identical experiment records (at least
partially whereupon the BF is based), allowing for meaningful comparison among the two. This is achieved through
update_log_likelihood().

Similiar to the training stage, remote_bayes_factor_calculation() can be run in parallel to provide a large
speedup to the overall QMLA protocol.

3.3.5 Storage

Finally, ModelInstanceForStorage is a much smaller onject than the previous forms of the
model, which retains only the useful information for storage/analysis within the bigger picture in
QuantumModelLearningAgent. It retrieves the succinct summaries of the training/comparisons pertainng to
a single model which are stored on the redis database, allowing for later anlaysis as required by QMLA. The retrieval
of trained model data is performed in model_update_learned_values().

3.3. Models 11

Quantum Model Learning Agent Documentation, Release 1

3.4 Modular functionality

A large amount of the design of an ES involves implementation of subroutines: there are a number of methods of
ExplorationStrategy which can be overwritten in order to achieve functionality specific to the target system.
In this section we describe these subroutines. Many of the subroutines have a number of sensible implementations: we
make QMLA emph{modular} by providing a set of pre-built subroutines, and allow them to be easily swapped so that
a new ES can benefit from arbitrary combiniations of subroutines. The subroutines are called by wrapper methods in
ExplorationStrategy; to set which function is called, change the attribute in the definition of the custom ES.
Alternatively, directly overwrite the wrapper. The pre-built functions are in qmla/shared_functionality.

Within ExplorationStrategy , these modular functions are set in _setup_modular_subroutines().

An example of setting each of these subroutines is

from qmla.shared_functionality import experiment_design_heuristics as edh
from qmla.shared_functionality import expectation_value_functions as ev
from qmla.shared_functionality import \

qmla.shared_functionality.probe_set_generation as probes
from qmla.shared_functionality import qinfer_model_interface as qii
from qmla.shared_functionality import prior_distributions
from qmla.shared_functionality import latex_model_names as lm

class UserExplorationStrategy(qmla.ExplorationStrategy):
def __init__(

self,
exploration_rules,
true_model=None,

**kwargs
):

super().__init__(
exploration_rules=exploration_rules,
true_model=true_model,

**kwargs
)
Overwrite true model
self.true_model = 'pauliSet_1_x_d1+pauliSet_1_y_d1'

Overwrite expectation value subroutine
self.expectation_value_subroutine = ev.default_expectation_value

Overwrite probe generation subroutines
self.system_probes_generation_subroutine = probes.plus_probes_dict
self.plot_probes_generation_subroutine = probes.zero_state_probes

Overwrite exeperiment design heuristic
self.model_heuristic_subroutine = edh.VolumeAdaptiveParticleGuessHeuristic

Overwrite QInfer interface
self.qinfer_model_subroutine = qii.QInferModelQMLA

Overwrite prior distribution subroutine
self.prior_distribution_subroutine = priors.gaussian_prior

Overwrite latex mapping subroutine
self.latex_string_map_subroutine = lm.lattice_set_grouped_pauli

12 Chapter 3. User Guide

Quantum Model Learning Agent Documentation, Release 1

3.4.1 Probes

The probe is the input state used during the learning procedure. Different probes permit different biases on the infor-
mation available to the algorithm; it is essential to consider which probes are appropriate for learning different classes
of models. In general the training procedure loops over the available probes, to minimise the chance of favouring some
models due to bias inherent in the probe. For example, if the probe is (close to) an eigenstate of one candidate model,
that model will never learn effectively since there will be little variation in measurements correspdonding to evolving
the probe according to that model. Intuitively, the most informative probe for a given model is a superposition of its
eigenstates, since any evolution in this basis will be reflected by the measurement.

The default set of probes is to use a random set. Alternative sets include |+⟩⊗𝑁 or |0⟩⊗𝑁 . Probes are generated in
a dictionary, of which the keys are (probe_id, num_qubits); probe_id runs from 1 to the num_probes
attribute of the ExplorationStrategy controls; the num_qubits runs from 1 to max_num_qubits.

There are a number of sets of probes required, all similarly set by specifying the subroutine:

system_probes_generation_subroutine Probes used for evolution on the target system

simulator_probes_generation_subroutine Probes correspdonding exactly to those used
on the system. These should be the same so that the likelihood function is meaningful, but in realistic
cases there may be slight differences in probe preparation, e.g. due to expected noise in an experi-
mental system. Therefore it is possible to specify a different set. Note to enable this functionality,
shared_probes must also be set to False.

plot_probes_generation_subroutine Probes used for plots throughout the protocol. Plots
should be in the same basis for consistency; we generate them once per run to save time, since the
plot probes are the same everywhere. The standard plotting probes are |+⟩⊗𝑁 .

evaluation_probe_generation_subroutine Some ES use evaluation datasets within model
selection; to specify a different generator than system_probes_generation_subroutine,
set this attribute. Defaults to None.

3.4.2 Experiment design heuristic

In order for the model Training to perform well, it is essential that the parameter learning subroutine is fed useful,
meaningful data. We use an experiment design heuristic (EDH) to generate informative experiments. The EDH can
encompass custom logic for particular use cases, although the most common (particle guess heuristic [WGFC13a])
attempts to select an evolution time 𝑡 which can distinguish between strong and weak parameterisations (particles)
based on the current distribution.

Primarily the EDH must choose an evolution time 𝑡 and probe, since these two together specify an entire experiment
in most use cases. QMLA can consider more complex experiment designs, in which case the EDH must also choose
informative values for all inputs.

3.4.3 QInfer interface

As mentioned, the workhorse of model Training is [QInfer]. The default behaviour of QInferModelQMLA is to call
likelihood() for both the calculation of the datum from the system, and the likelihoods of all the particles through
the simulator. This too can be replaced, for example if calls to the system need to interface with a real experiment, or
the particles should be computed through a quantum simulator.

3.4. Modular functionality 13

Quantum Model Learning Agent Documentation, Release 1

3.4.4 Prior distribution

QInfer works by taking an initial prior distribution, which it iteratively narrows based on quantum likelihood estima-
tion. This process of narrowing the distribution is what we call emph{learning}: after 𝑁𝐸 experiments worth of data,
the mean of the remaining distribution is considered as the optimised parameterisation.

The prior can be altered to incorporate the user’s prior knowledge about the system. The default generator for
the prior is to construct an 𝑛 dimensional Gaussian through gaussian_prior(). Importantly, the range of
each term’s parameter can be different, e.g. near-neighbour couplings having much higher frequency than distant
neighbours. Terms’ prior mean and width can be specified in gaussian_prior_means_and_widths. Terms
which do not have specific means/widths in gaussian_prior_means_and_widths are assigned based on the
ExplorationStrategy attributes min_param, max_param: the defaults are

mean = (max_param + min_param)/2;

width= (max_param - min_param)/4.

To overwrite this, e.g. to change the default width of each parameter’s distribution, users can implement a new prior
generation function to replace prior_distribution_subroutine.

self.gaussian_prior_means_and_widths = {
'pauliSet_1_x_d1' : (5, 1),
'pauliSet_1_y_d1' : (150, 25),
'pauliSet_1_z_d1' : (1e6, 1e2)

}
self.min_param = 0
self.max_param = 10

self.prior_distribution_subroutine = alternatve_prior_generation

3.4.5 Latex name mapping

Each model string format requires a method which can map the string to a Latex string. This is because much of
the analysis automatically generated by QMLA refers to individual models or terms, so it is useful that these can
be rendered into a readable format, rather than the raw string used to generate the matrices used by the algorithm.
The mapping function should be able to operate either on single terms or entire models strings. If using terms like
pauliSet_i_t_dN, the default pauli_set_latex_name() should work. Further examples, specific to mod-
els of bespoke ES are grouped_pauli_terms(), fermi_hubbard_latex().

>>> from qmla.shared_functionality.latex_model_names import grouped_pauli_terms
>>> self.latex_string_map_subroutine = grouped_pauli_terms

3.5 Output and Analysis

When a run is launched (either locally or remotely), a results directory is built for that run. In that directory, results
are stored in several formats from each instance.

By default, QMLA provides a set of analyses, generating several plots in the sub-directories of the run’s results direc-
tory.

Analyses are available on various levels:

Run results across a number of instances.

Example: the number of instance wins for champion models.

14 Chapter 3. User Guide

Quantum Model Learning Agent Documentation, Release 1

Example: average dynamics reproduced by champion models.

Instance Performance of a single insance.

Example: models generated and the branches on which they reside

Model Individual model performance within an instance.

Example: parameter estimation through QHL.

Example: pairwise comparison between models.

Comparisons Pairwise comparison of models’ performance.

Example: dynamics of both candidates (with respect to a single basis).

Within the Launch scripts, there is a plot_level variable which informs QMLA of how many plots to produce
by default. This gives users a level of control over how much analysis is performed. For instance, while testing
an Exploration Strategy, a higher degree of testing may be required, so plots relating to every individual model are
desired. For large runs, however, where a large number of models are generated/compared, plotting each model’s
training performance is overly cumbersome and is unneccessary.

The plots generated at each plot level are:

plot_level=1

_plot_model_terms()

plot_level=2

plot_level=3

_plot_dynamics_all_models_on_branches()

_plot_evaluation_normalisation_records()

plot_level=4

_plot_learning_summary()

_plot_dynamics()

_plot_preliminary_preparation()

plot_dynamics_from_models()

plot_level=5

_plot_distributions()

plot_heuristic_attributes()

plot_level=6

3.6 Launch

There are two mechanisms for launching QMLA: locally and in parallel. Both of are available through bash scripts in
qmla/launch. When launched in parallel, the model training/comparison subroutines are run on remote processes,
e.g. in a compute cluster. In either case, the user has a set of top-level controls, bearing in mind that the majority of
user requirements are implemented in the ExplorationStrategy . Following the setting of these controls, the
remainder of the launch script call a number of bash and Python scripts for the actual implementation, which most
users should not need to alter.

The available controls to the user are

3.6. Launch 15

Quantum Model Learning Agent Documentation, Release 1

num_instances number of instance in the run

run_qhl if 1, only implements QHL on the true_model attribute of the ES, i.e.
run_quantum_hamiltonian_learning().

run_qhl_mulit_model if 1, only implements QHL on the qhl_models attribute (list) of
the ES, i.e. run_quantum_hamiltonian_learning_multiple_models().
if both this and :run_qhl: are 0, then the full QMLA protocol is run
(run_complete_qmla()).

exp Number of experiments used during model training

prt Number of particles used during model training

plot_level specifies the granularity of plots generated. See Output and Analysis

debug_mode (bool) whether to run QMLA in degug mode. Should not be required by most
users; this mode merely logs further data in the instances’ log files, which can be found in
the run results directory.

exploration_strategy specify the name of the ES class to use.

alt_exploration_strategies list of alternative ES for the case where multiple ET s are con-
sidered. This list should be in brackets with elements separated by spaces (i.e no
commas). Note that in parallel_launch.sh, this must be enabled through set-
ting multiple_exploration_strategies=1, while in local_launch.sh it
is sufficient that the list is not empty.

An example of the top few lines of local_launch.sh is then given by

#!/bin/bash

###############
QMLA run configuration
###############
num_instances=100
run_qhl=0 # perform QHL on known (true) model
run_qhl_mulit_model=0 # perform QHL for defined list of models.
exp=500 # number of experiments
prt=2000 # number of particles

###############
QMLA settings - user
###############
plot_level=4
debug_mode=0

###############
QMLA settings - default
###############
do_further_qhl=0
q_id=0
use_rq=0
further_qhl_factor=1
further_qhl_num_runs=$num_instances
plots=0
number_best_models_further_qhl=5

###############
Choose exploration strategy/strategies

(continues on next page)

16 Chapter 3. User Guide

Quantum Model Learning Agent Documentation, Release 1

(continued from previous page)

###############

exploration_strategy='UserExplorationStrategy'

alt_exploration_strategies=(
'IsingLatticeSet'
'Genetic'

)

3.6.1 Redis server

QMLA uses a redis server as a database and job broker for the implementation of remote tasks. This is launhed
automatically when using parallel_launch.sh, but using local_launch.sh, must be initiated in terminal
as

3.6. Launch 17

Quantum Model Learning Agent Documentation, Release 1

18 Chapter 3. User Guide

CHAPTER

FOUR

API REFERENCE

4.1 Quantum Model Learning Agent

4.1.1 Manager class

The overall QMLA protocol is managed by this class.

class qmla.QuantumModelLearningAgent(qmla_controls=None, model_priors=None, experimen-
tal_measurements=None, **kwargs)

QMLA manager class.

Controls the infrastructure which determines which models are learned and compared. By interpreting user
defined ExplorationStrategy , grows ExplorationTree objects which hold numerous models on
BranchQMLA objects. All models on branches are learned and then compared. The comparisons on a branch
inform the next set of models generated on that tree.

First calls a series of setup functions to implement infrastructure used throughout.

The available algorithms, and their corresponding methods, are:

• Quantum Hamilontian Learning:

run_quantum_hamiltonian_learning()

• Quantum Hamilontian Learning multiple models:

run_quantum_hamiltonian_learning_multiple_models()

• Quantum Model Learning Agent:

run_complete_qmla()

Parameters

• qmla_controls (ControlsQMLA) – Storage for configuration of a QMLA instance.

• model_priors (dict) – values of means/widths to enfore on given models, specifically
for further_qhl mode.

• experimental_measurements (dict) – expectation values by time of the underly-
ing true/target model.

_check_model_exists(model_name)
True if model already exists; False if not.

_compile_and_store_qmla_info_summary()
Gather info needed to run QMLA tasks and store remotely.

19

Quantum Model Learning Agent Documentation, Release 1

QMLA issues jobs to run remotely, namely for model (parameter) learning and model comparisons (Bayes
factors). These jobs don’t need access to all QMLA data, but do need some common info, e.g. number
of particles and epochs. This function gathers all relevant information in a single dict, and stores it on the
redis server which all worker nodes have access to. It also stores the probe sets required for the same tasks.

_compute_base_resources()
Compute the set of minimal resources for models to learn on.

In the case self.reallocate_resources==True, models will receive resources (epochs, particles) scaled by
how complicated they are. For instance, models with 4 parameters will receive twice as many particles as
a model with 2 parameters.

_consider_new_model(model_name)
Check whether a proposed model already exists.

Check whether the new model name, exists in all previously considered models, held in model_lists, or-
ganised by dimension of models. If name has not been previously considered, ‘New’ is returned. If name
has been previously considered, the corresponding location

in db is returned.

Parameters

• model_lists (dict) – lists of models already considered, organised by the number of
qubits of those models

• name (str) – model for consideration

_delete_unpicklable_attributes()
Remove elements of QMLA which cannot be pickled, which cause errors if retained.

_fundamental_settings()
Basic settings, path definitions etc.

_get_model_data_by_field(name, field)
Get any data from the model database corresponding to a given model name.

Parameters

• name (str) – model name to get data of

• field (str) – field name to get data corresponding to model

_inspect_remote_job_crashes()
Check if any job on redis queue has failed.

_plot_bayes_factors()
Plot Bayes factors between pairs of models, both by model IDs and by their F-scores.

_plot_branch_champions_dynamics(all_models=False, model_ids=None)
Plot reproduced dynamics of all branch champions

Parameters

• all_models (bool) – whether to plot all models in the instance

• model_ids (list) – list of model IDs to plot dynamics of

• save_to_file (str) – path at which to save the resultant figure

_plot_branch_champs_quadratic_losses()
Wrapper for plot_quadratic_loss().

20 Chapter 4. API Reference

Quantum Model Learning Agent Documentation, Release 1

_plot_branch_champs_volumes(model_id_list=None, branch_champions=True,
branch_id=None, save_to_file=None)

Plot the volume of each branch champion within this instance.

Parameters

• model_id_list (list) – list of model IDs to plot volumes of, if None plot branch
champions

• branch_champions (bool) – force plot only branch champions’ volumes

• branch_id (int) – if provided, plot the volumes of all models within that branch

• save_to_file (str) – path at which to store the resultant figure.

_plot_dynamics_all_models_on_branches(branches=None)
Plot the dynamics of all models on given branches.

Parameters branches (list, optional) – list of branches to draw dynamics for, defaults
to None, in which case all branches are drawn.

_plot_evaluation_normalisation_records()
Plot the normalisation record of all models grouped by the branch they are on.

_plot_exploration_tree(modlist=None, only_adjacent_branches=True, save_to_file=None)
Wrapper for plot_qmla_single_instance_tree()

_plot_model_terms(colour_by='binary')
Plot the terms of each model by model ID.

Parameters colour_by (str, optional) – defaults to ‘binary’ for black/white; alterna-
tively colour by f_score of model

_plot_one_qubit_probes_bloch_sphere(save=False)
Show all one qubit probes on Bloch sphere.

_plot_parameter_learning_champion()
Plot parameter estimates vs experiment number for a single model.

Wrapper for plot_parameter_estimates() :param bool true_model: whether to force only plot-
ting the true

model’s parameter estimeates

_plot_parameter_learning_single_model(model_id=0, true_model=False,
save_to_file=None)

Plot parameter estimates vs experiment number for a single model.

Wrapper for plot_parameter_estimates() :param bool true_model: whether to force only plot-
ting the true

model’s parameter estimeates

_plot_parameter_learning_true()
Plot parameter estimates vs experiment number for a single model.

Wrapper for plot_parameter_estimates() :param bool true_model: whether to force only plot-
ting the true

model’s parameter estimeates

_plot_qmla_radar_scores(modlist=None, save_to_file=None)
deprecated Wrapper for plotRadar().

_plot_r_squared_by_epoch_for_model_list(modlist=None, save_to_file=None)
Plot R^2 vs experiment number for given model list.

4.1. Quantum Model Learning Agent 21

Quantum Model Learning Agent Documentation, Release 1

_plot_volume_after_qhl(model_id=None, true_model=True, show_resamplings=True,
save_to_file=None)

Plot volume vs experiment number of a single model. Wrapper for plot_volume_after_qhl()

_potentially_redundant_setup()
Graveyard for deprecated ifnrastructure.

Attributes etc stored here which are not functionally used within QMLA, but which are called somewhere,
and cause errors when omitted. Should be stored here temporarily during development, and removed
entirely when sure they are not needed.

_set_learning_and_comparison_parameters(model_priors, experimental_measurements)
Parameters related to learning/comparing models.

_setup_parallel_requirements()
Infrastructure for use when QMLA run in parallel.

_setup_tree_and_exploration_strategies()
Set up infrastructure.

_true_model_definition()
Information related to true (target) model.

_update_database_model_info()
Calls model_update_learned_values() for all models learned in this instance.

add_model_to_database(model, exploration_tree, branch_id=- 1, force_create_model=False)
Considers adding a model to QMLA’s database of models.

Checks whether the nominated model is already present; if not generates a model instance and stores
pertinent details in the model database.

Parameters

• model (str) – name of model to consider

• branch_id (float) – branch id to associate this model with, if the model is new.

• force_create_model (bool) – True: add model even if the name is found already.
False: (default) check if the model exists before adding

Return dict add_model_output is_new_model : bool, whether model is new (True) or has al-
ready been added (False) model_id: unique model ID for the model, whether new or existing

analyse_instance()
Basic analysis of this instance

check_champion_reducibility()
Potentially remove negligible terms from the champion model.

Consider whether the champion model has some terms whose parameters were found to be negligible
(either within one standard deviation from 0, or very close to zero as determined by the exploration strat-
egy’s learned_param_limit_for_negligibility attribute). Construct a new model which is the same as the
champion, less those negligible terms, named the reduced champion. The data of the champion model is
inherited by the reduced candidate model, i.e. its parameter estimates, as well as its history of parameter
learning for those which are not negligible. A new normalization_record is started, which is used in the
comparison between the champion and the reduced champion. Compare the champion with the reduced
champion; if the reduced champion is heavily favoured, directly select it as the global champion. This
method is triggered if the exploration strategy’s check_champion_reducibility attribute is set to True.

compare_model_pair(model_a_id, model_b_id, return_job=False, branch_id=None, remote=True,
wait_on_result=False)

Launch the comparison between two models.

22 Chapter 4. API Reference

Quantum Model Learning Agent Documentation, Release 1

Either locally or by passing to a job queue, run remote_bayes_factor_calculation() for a pair
of models specified by their IDs.

Parameters

• model_a_id (int) – unique ID of one model of the pair

• model_b_id (int) – unique ID of other model of the pair

• return_job (bool) – True - return the rq job object from this function call. False
(default) - return nothing.

• branch_id (int) – unique branch ID, if this model pair are on the same branch

• remote (bool) – whether to run the job remotely or locally True - job is placed on queue
for RQ worker False - function is computed locally immediately

• wait_on_result (bool) – whether to wait for the outcome or proceed after sending
the job to the queue.

Returns bayes_factor the Bayes factor calculated between the two models, i.e. BF(m1,m2)
where m1 is the lower model id. Only returned when wait_on_result==True.

compare_model_set(model_id_list=None, pair_list=None, remote=True, wait_on_result=False, re-
compute=False)

Launch pairwise model comparison for a set of models.

If pair_list is specified, those pairs are compared; otherwise all pairs within model_id_list are compared.

Pairs are sent to compare_model_pair() to be computed either locally or on a job queue.

Parameters

• model_id_list (list) – list of model names to compute comparisons between

• pair_list (list) – list of tuples specifying model IDs to compare

• remote (bool) – passed directly to compare_model_pair()

• wait_on_results (bool) – passed directly to compare_model_pair()

• recompute (bool) – whether to force comparison even if a pair has been compared
previously

compare_models_within_branch(branch_id, pair_list=None, remote=True, recompute=False)
Launch pairwise model comparison for all models on a branch.

If pair_list is specified, those pairs are compared; otherwise pairs are retrieved from the pairs_to_compare
attribute of the branch, which is usually all-to-all.

Pairs are sent to compare_model_pair() to be computed either locally or on a job queue.

Parameters

• branch_id – unique ID of the branch within the QMLA environment

• pair_list (list) – list of tuples specifying model IDs to compare

• remote (bool) – passed directly to compare_model_pair()

• wait_on_results (bool) – passed directly to compare_model_pair()

• recompute (bool) – whether to force comparison even if a pair has been compared
previously

4.1. Quantum Model Learning Agent 23

Quantum Model Learning Agent Documentation, Release 1

compare_nominated_champions()
Compare the champions of all exploration strategy trees.

Get the champions (usually one, but in general can be multiple) from each tree, where each tree is unique to
an exploration strategy. Place the champions on a branch together and perform all-versus-all comparisons.
The champion of that branch is deemed the global champion.

compute_model_f_score(model_id, model_name=None, model_constructor=None, explo-
ration_class=None, beta=1)

Compte and store f-score of given model.

Parameters

• model_id (int) – model ID to compute f-score of

• beta (float) – for generalised F_beta score. (default) 1 for F1 score.

Return float f_score F-score of given model.

compute_statistical_metrics_by_generation()
Compute, store and plot various statistical metrics of all studied models.

Parameters save_to_file (str) – path to save the resultant figure in.

finalise_qmla()
Steps to end QMLA algorithm, such as storing analytics.

get_model_storage_instance_by_id(model_id)
Get the unique ModelInstanceForLearning for the given model_id.

Parameters model_id (int) – unique ID of desired model

Returns storage class of the model

Return type ModelInstanceForLearning

get_results_dict(model_id=None)
Store the useful information of a given model, usually the champion.

Parameters model_id (int) – unique ID of the model whose information to store

Return dict results_dict data which will be stored in the results_{ID}.p file following QMLA’s
completion.

learn_model(model_name, branch_id, blocking=False)
Learn a given model by calling the standalone model learning functionality.

The model is learned by launching a job either locally or to the job queue. Model learning is im-
plemented by remote_learn_model_parameters(), which takes a unique model name (string)
and distills the terms to learn. If running locally, QMLA core info is passed. Else if RQ workers are
being used, it retrieves QMLA info from the shared redis database, and the function is launched via
rq’s Queue.enqueue function. This puts a task on the redis Queue - the task is the implementation of
remote_learn_model_parameters(). The effect is either to learn the model here, or else to have
launched a job where it will be learned remotely, so nothing is returned.

Parameters

• model_name (str) – string uniquely representing a model

• branch_id (int) – unique branch ID within QMLA environment

• use_rq (bool) – whether to use RQ workers, or implement locally

• blocking (bool) – whether to wait on model to finish learning before proceeding.

24 Chapter 4. API Reference

Quantum Model Learning Agent Documentation, Release 1

learn_models_on_given_branch(branch_id, blocking=False)
Launches jobs to learn all models on the specified branch.

Models which are on the branch but have already been learned are not re-learned. For each remain-
ing model on the branch, learn_model() is called. The branch is added to the redis database ac-
tive_branches_learning_models, indicating that branch_id has currently got models in the learning phase.
This redis database is monitored by the learn_models_until_trees_complete(). When all
models registered on the branch have completed, it is recorded, allowing QMLA to perform the next stage:
either spawning a new branch from this branch, or continuing to the final stage of QMLA. This method
can block, meaning it waits for a model’s learning to complete before proceeding. If in parallel, do not
block as model learning won’t be launched until the previous model has completed.

Parameters

• branch_id (int) – unique QMLA branch ID to learn models of.

• use_rq (bool) – whether to implement learning via RQ workers. Argument only used
when passed to QuantumModelLearningAgent.learn_model().

• blocking (bool) – whether to wait on all models’ learning before proceeding.

learn_models_until_trees_complete()
Iteratively learn/compare/generate models on exploration strategy trees.

Each ExplorationStrategy has a unique QMLATree`. Trees hold sets of models on BranchTree
objects.

Models on a each branch are learned through learn_models_on_given_branch(). Any model
which has previously been considered defaults to the earlier instance of that model, rather than re-
peating the calculation. When all models on a branch are learned, they are all compared through
compare_models_within_branch().

When a branch has completed learning and comparisons of models, the corresponding tree is checked to
see if it has finished proposing models, through is_tree_complete(). If the tree is not complete,
the next_layer() method is called to generate the next branch on that tree. The next branch can
correspond to spawn or prune stages of the tree’s ExplorationStrategy , but QMLA is ambivalent
to the inner workings of the tree/exploration strategy: a branch is simply a set of models to learn and
compare.

When all trees have completed learning, this method terminates.

log_print(to_print_list)
Wrapper for print_to_log()

new_branch(model_list, pairs_to_compare='all', pairs_to_compare_by_names=None, explo-
ration_strategy=None, spawning_branch=0)

Add a set of models to a new QMLA branch.

Branches have a unique id within QMLA, but belong to a single tree, where each tree corresponds to a
single exploration strategy.

Parameters

• model_list (list) – strings corresponding to models to place in the branch

• pairs_to_compare (str or list) – set of model pairs to perform comparisons
between. ‘all’ (deafult) means all models in model_list are set to compare. Otherwise a
list of tuples of model IDs to compare

• exploration_strategy (str) – exploration strategy identifer; used to get the
unique tree object corresponding to an exploration strategy, which is then used to host
the branch.

4.1. Quantum Model Learning Agent 25

Quantum Model Learning Agent Documentation, Release 1

• spawning_branch (int) – branch id which is the parent of the new branch.

Returns branch id which uniquely identifies the new branch within the QMLA environment.

plot_instance_outcomes()
Generate plots corresponding to this instance.

A number of plotting routines are called, depending on the plot_level set by the user at launch.

process_comparisons_within_branch(branch_id, pair_list=None)
Process comparisons between models on the same branch.

(Similar functionality to process_model_set_comparisons(), but additionally updates some
branch infrastructure, such as updating the branch’s champion_id, bayes_points attributes). Pairwise com-
parisons are retrieved and processed by process_model_pair_comparison(), which informs the
superior model. For each pairwise comparison a given model wins, it receives a single point. All compar-
isons are weighted evenly. Model points are gathered; the model with most points is deemed the champion
of the set. If a subset of models have the same (highest) number of points, that subset is compared directly,
with the nominated champion deemed the champion of the wider set.

Parameters branch_id (int) – unique ID of the branch whose models to compare

Returns

• models_points: the points (number of comparisons won) of each model on the branch

• champ_id: unique model ID of the champion model within the set

process_model_pair_comparison(a=None, b=None, pair=None)
Process a comparison between two models.

The comparison (Bayes factor) result is retrieved from the redis database and used to update data on the
models.

Parameters

• a (int) – one of the model’s unique ID

• b (int) – one of the model’s unique ID

• pair (tuple) – alternative mechanism to provide the model IDs, effectively (a,b)

Returns ID of the model which is deemed superior from this pair

process_model_set_comparisons(model_list)
Process comparisons between a set of models.

Pairwise comparisons are retrieved and processed by process_model_pair_comparison(),
which informs the superior model.

For each pairwise comparison a given model wins, it receives a single point.

All comparisons are weighted evenly. Model points are gathered; the model with most points is deemed
the champion of the set.

If a subset of models have the same (highest) number of points, that subset is compared directly, with the
nominated champion deemed the champion of the wider set.

Parameters model_list (list) – list of model names to compete

Returns unique model ID of the champion model within the set

run_complete_qmla()
Run complete Quantum Model Learning Agent algorithm.

26 Chapter 4. API Reference

Quantum Model Learning Agent Documentation, Release 1

Each ExplorationStrategy is assigned a QMLATree, which manages the exploration strat-
egy. When new models are spawned by an exploration strategy, they are placed on a
BranchQMLA of the corresponding tree. Models are learned/compared/spawned iteratively in
learn_models_until_trees_complete(), until all trees declare that their exploration strategy
has completed. Exploration Strategies are complete when they have nominated one or more champions,
which can follow spawning/pruning stages as required by the exploration strategy. Nominated champions
are then compared with compare_nominated_champions(), resulting in a single global champion
selected. Some analysis then takes place, including possibly reducing the selected global champion if it is
found that some of its terms are not impactful.

run_quantum_hamiltonian_learning()
Run Quantum Hamiltonian Learning algorithm .

The true_model of the ExplorationStrategy is used to generate true data (in simulation) and have
its parameters learned.

run_quantum_hamiltonian_learning_multiple_models(model_names=None)
Run Quantum Hamiltonian Learning algorithm with multiple simulated models.

Numerous Hamiltonian models attempt to learn the dynamics of the true model. The underlying model is
set in the ExplorationStrategy’s true_model attribute.

Parameters model_names (list) – list of strings of model names to learn the parameterisa-
tions of. None: taken from ExplorationStrategy qhl_models.

spawn_from_branch(branch_id)
Retrieve the next set of models and place on a new branch.

By checking the QMLATree` associated with the branch_id used to call this method, call
ExplorationTree.next_layer(), which returns a set of models to place on a new branch, as
well as which models therein to compare. These are passed to new_branch(), constructing a new
branch in the QMLA environment. The generated new branch then has all its models learned by calling
learn_models_on_given_branch(). next_layer() is in control of how to select the next
set of models, usually either by calling the ExplorationStrategy’s generate_models() or
tree_pruning() methods. This allows the user to define how models are generated, given access
to the comparisons of the previous branch, or how the tree is pruned, e.g. by performing preliminary
parent/child branch champion comparisons.

Parameters branch_id (int) – unique ID of the branch which has completed

store_bayes_factors_to_csv(save_to_file, names_ids='latex')
deprecated Store the pairwise comparisons computed during this instance.
model_bayes_factorsCSV() removed and is needed TODO if wanted, find in old github
commits and reimplement.

Wrapper for model_bayes_factorsCSV().

store_bayes_factors_to_shared_csv(bayes_csv)
Store the pairwise comparisons computed during this instance in a CSV shared by all concurrent instances.

4.1. Quantum Model Learning Agent 27

Quantum Model Learning Agent Documentation, Release 1

4.2 Logistics

Here we list some of the functionality used as the logistics to implement QMLA.

4.2.1 User controls

ControlsQMLA Controls (user and otherwise) to specify QMLA instance.

class qmla.ControlsQMLA(arguments, **kwargs)
Storage for configuration of a QMLA instance.

Command line arguments specify details about the QMLA instance, such as number of experiments/particles etc,
required to implement the QMLA instance. The command line arguments are stored together in this class. The
class is then given to the qmla.QuantumModelLearningAgent instance, which uses those details into the
implementation. Some QMLA parameters are also set by the attributes of the Exploration Strategy. In particular,
the ExplorationStrategy of the true model is instantiated by calling get_exploration_class().
model is defined as the true model of that instance. This exploration strategy instance is the master exploration
strategy for the QMLA instance: the true Likewise, instances are generated for all of the exploration strategies
specified by the user: these instances are associated with the exploration strategy ExplorationTree objects.

Parameters arguments (dict) – command line arguments, parsed into a dict.

log_print(to_print_list)
Wrapper for print_to_log()

4.2.2 Database framework

Operator Object for mathematical properties of a single model.

Functions

qmla.get_num_qubits(name)
Parse string and determine number of qubits this operator acts on.

Default convention is to use a naming mechanism specified by string_processing_functions(). In
all such constructions, the final element of each term is dN, so we can extract the number of qubits N.

If using old convention where terms are tensor-producted by T, TT, TTT. . . , we find the largest T string
instance, from which we deduce the number of qubits. - xTx = pauli_x TENSOR_PRODUCT pauli_x –>
2 qubits - yTyTTy = pauliy_y TENSOR_PRODUCT pauli_y TENSOR_PRODUCT pauli_y –> N=3 i.e. the
largest tensor product of of length is N-1.

Parameters name (str) – name of model

qmla.get_constituent_names_from_name(name)
Separate into separate terms in model name. e.g. ‘pauliSet_1_x_d2+pauliSet_1_y_d2’ -> [‘pauliSet_1_x_d2’,
‘pauliSet_1_y_d2’] :param str name: name of model

qmla.alph(name)
Alphabetise the model name.

If name newer follows convention where terms are separated by +, simply separate them. If name follows older
convention, analyse to separate terms and then alphabetise them. Parse string and recursively call alph function
to alphabetise substrings.

Parameters name (str) – name of model to alphabetise

28 Chapter 4. API Reference

Quantum Model Learning Agent Documentation, Release 1

4.2.3 Model Generation

qmla.process_basic_operator(basic_operator)
Transform a string, representing a term in the model, into a matrix.

Physical systems have different corresponding string processing functions. These are provided in the dictionary
qmla.process_string_to_matrix.string_processing_functions. There are a number of rules which model strings
must obey to be processed properly.

• Terms are separated by +.

• Within terms, components are separated by _.

• Components have different meanings, depending on which string processing function is used.

• The first component is the indicator of which processing function to use; it is matched with a processing
function in ~qmla.string_processing_functions.

• The final component in general indicates the dimension N of the system, and is specified by dN.

• No other component should start with d, as it uniquely indicates the dimension.

• Alternatively, core operators can be processed alone, these are given in core_operator_dict.

For example, the string pauliSet_1J2_xJx_d3+pauliSet_1J3_zJz_d3:

• Terms: pauliSet_1J2_xJx_d3, pauliSet_1J3_zJz_d3

• Components (of pauliSet_1J2_xJx_d3): pauliSet, 1J2, xJx, d3

• Indicator pauliSet tells it to process via process_multipauli_term().

• d3 tells it to use a 3 qubit basis

• Other components are interpreted by the string processing function

• In this case, the result is the matrix (XXI + ZIZ) .

Parameters basic_operator (str) – term to generate matrix from.

Return np.ndarray mtx matrix corresponding to the input term.

4.2.4 String to matrix processing

These functions map strings to matrices which can be used in the construction of models.

4.2.5 Initialising Exploration Strategy

qmla.get_exploration_class(exploration_rules, **kwargs)
Get an instance of the class specified by the user which implements an exploration Strategy.

Instance of a ExplorationStrategy (or subclass). This is used to specify how QMLA proceeds, in partic-
ular by designing the next batch of models to test. Exploration Strategy is specified by the name passed to im-
plement_qmla in the launch script, through the command line flag exploration_strategy. This string is searched
for in the exploration_classes dictionary. New exploration strategies must be added here so that QMLA can find
them.

Parameters exploration_rules (str) – string corresponding to an exploration strategy

Params **kwargs**kwargs arguments required by the exploration strategy, passed directly to the
desired exploration strategy’s constructor.

4.2. Logistics 29

Quantum Model Learning Agent Documentation, Release 1

Return ExplorationStrategy gr exploration strategy class instance

4.2.6 Trees and branches

class qmla.ExplorationTree(exploration_class)
Tree corresponding to an exploration strategy for management within QMLA.

Each ExplorationStrategy in the QuantumModelLearningAgent instance is associated with one
tree (instance of this class). The tree interacts with the QMLA environment, for instance to choose the next set of
models to learn through next_layer(). BranchQMLA exist both on the tree and the QMLA environment.

Parameters exploration_class (ExplorationStrategy) – instance of the exploration
strategy to associate with this tree.

finalise_tree(**kwargs)
After learning/pruning complete, run finalise_model_learning().

get_initial_models()
Models for the first layer of this exploration strategy.

Return list initial_models list of model names to place on the first layer corresponding to this
ES

Return list pairs_to_compare list of model name pairs to compare

is_tree_complete()
Check if tree has completed and doesn’t need any further branches.

log_print(to_print_list)
Wrapper for print_to_log()

new_branch_on_tree(branch_id, models, pairs_to_compare, model_storage_instances, precom-
puted_models, spawning_branch, **kwargs)

Add a branch to this tree.

Generate a new BranchQMLA, and places the given models on it, and assign it to this tree. Return the
object, so it can also act as a branch/layer in the QuantumModelLearningAgent environment. Note
models can reside on multiple branches.

Parameters

• branch_id (int) – branch ID unique to this branch and new in the QMLA environment.

• models (list) – model names to place on this branch.

• pairs_to_compare (list) – list of pairs of models to compare on this branch.

• model_storage_instances (dict) – ModelInstanceForStorage instances
of each model id to be placed on this branch.

• precomputed_models (list) – models to place on branch which have already been
learned on a previous branch.

• spawning_branch (int) – branch ID spawning this branch, to be recorded as the new
branch’s parent.

Return BranchQMLA branch instance of branch

next_layer(**kwargs)
Determine the next set of models, for the next branch of this exploration strategy tree.

These are generated iteratively in stages, until that stage is marked as complete within the exploration
strategy. * Spwaning: using the set of models from the previous branch to construct new models,

30 Chapter 4. API Reference

Quantum Model Learning Agent Documentation, Release 1

via generate_models().

• The spawning stage is terminated when check_tree_completed() returns True. For example,
if a predetermined number of spawn steps have passed, or if the model learning has converged.

• After the spawn stage, the tree enters the pruning stage. For example, parental collapse: branch
champions of this tree are compared with their parents; if either parent or child is strongly superior,
the loser does not progress to the next branch.

• Pruning is carried out by tree_pruning(), until :meth:`~qmla.exploration_strategies.ExplorationStrategy.check_tree_pruned
returns True.

• After the pruning stage, it must be possible for this tree to nominate a list of models to be considered
for global champion, by nominate_champion().

The set of models decided by this method are placed on the next QMLA branch. pairs_to_compare
here specifies which pairs of models on that next branch should be compared. Typically, model learning
corresponds to spawning; during this stage all models on branches should be compared. Pruning then
corresponds to comparing models which have already been leared (though new unlearned models will be
learned). During pruning, it may not be necessary to compare all pairs, for instance if it is desired only to
compare parent/child pairs at a given branch.

Parameters kwargs (dict) – key word args passed directly to spawning/pruning functions.

Return list model_list list of model names to place on the next QMLA branch

Return str or list pairs_to_compare which model IDs within the model_list to perform com-
parisons between.

nominate_champions()
After tree has completed, nominate champion(s) to contest for global champion.

Exploration Strategies can nominate one or more models as global champion. The nominated champi-
ons of all ESs enter an all-vs-all contest in compare_nominated_champions(), with the winner
deemed the global champion. This tree object interfaces with the ES, so here it is just a wrapper for
nominate_champions().

class qmla.BranchQMLA(branch_id, models, model_storage_instances, pairs_to_compare, tree, pre-
computed_models, spawning_branch)

update_branch(pair_list, models_points=None)
Process results for this branch.

Parameters

• pair_list (list) – pairs of models which were compared on this branch

• models_points (dict) – results of comparisons

4.2.7 Parameter definition

qmla.set_shared_parameters(exploration_class, run_info_file=None,
all_exploration_strategies=[], run_directory='', num_particles=100,
probe_max_num_qubits_all_exploration_strategies=12, gener-
ate_evaluation_experiments=True)

Set up parameters for this run of QMLA. A run consists of any number of independent QMLA instances; for
consistency they must share the same information. Parameters, such as true model (system) parameters and
probes to use for plotting purposes, are shared by all QMLA instances within a given run.

4.2. Logistics 31

Quantum Model Learning Agent Documentation, Release 1

This function does not return anything, but stores data required for the run to the run_info_file path. The
data pickled as run_info are:

True_model name of true model, i.e. the model we call the system, against which candidate models
are tested

Params_list list of parameters of the true model

Params_dict dict of parameters of the true model

Exploration_rule exploration strategy (name) of true model

All_exploration_strategies list of all exploration strategies (names) which are to be performed by
each instance

Evaluation_probes proebs to use during evaluation experiments

Evaluation_times times to use during evaluation experiments

Parameters

• exploration_class (ExplorationStrategy) – exploration strategy of true
model, from which to extract key info, e.g. true parameter ranges and prior.

• run_info_file (str) – path to which to store system information

• all_exploration_strategies (list) – list of instances of
ExplorationStrategy which are the alternative exploration strategies, i.e. which are
performed during each instance, but which do not specify the true model (system).

• run_directory (str) – path to which all results/information pertaining to this unique
QMLA run are stored

• num_paritlces (int) – number of particles used during model learning

• probe_max_num_qubits_all_exploration_strategies (int) – largest sys-
tem size for which to generate plot probes

• generate_evaluation_experiments (bool) – whether to construct an evaluation
dataset which can be used to objectively evaluate models. Evaluation data consists of exper-
iments (i.e. probes and evolution times) which were not typically used in model learning,
therefore each model can be compared fairly on this data set.

4.2.8 Redis

qmla.get_redis_databases_by_qmla_id(host_name, port_number, qmla_id,
tree_identifiers=None)

Gets the set of redis databases unique to this QMLA instance.

Each QuantumModelLearningAgent instance is associated with a unique redis database. Redis
databases are specified by their hostname and port number. All workers for the QMLA instance can
read the redis databsae of that instance. Data required by various workers is stored here, through
_compile_and_store_qmla_info_summary().

A set of databases are stored at the redis database host_name:port_number; these are listed in qmla.
redis_settings.databases_required.

Parameters

• host_name (str) – name of host server on which redis database exists.

• port_number (int) – this QMLA instance’s unique port number (6300 + qmla_id).

• qmla_id (int) – QMLA id, unique to a single instance within a run.

32 Chapter 4. API Reference

Quantum Model Learning Agent Documentation, Release 1

Return dict database_dict set of database addresses unique to the qmla_id, host_name and
port_number.

qmla.get_seed(host_name, port_number, qmla_id)
Unique seed for this QMLA id.

Numerous databases can belong to a given host:port address, and these are identified by their db attribute (a
number to keep databases separate). Databases are seeded using the qmla_id, as well as the host:port, to avoid
multiple QMLA instances, which can exist on the same host and port, clashing and interfering with each others’
data.

E.g. * A host:port is already in use for qmla_id=1, which uses a set of 5 databases. * qmla_id=2 requests
a set of databases on the same host:port * The first available db is 6, such that qmla_id=2 will not interfere
with

the databases of qmla_id=1.

Parameters

• host_name (str) – name of host server on which redis database exists.

• port_number (int) – this QMLA instance’s unique port number (6300 + qmla_id).

• qmla_id (int) – QMLA id, unique to a single instance within a run.

Return int seed unique number to use as the starting db for a given QMLA instances set of
databases.

4.2.9 Logging

qmla.print_to_log(to_print_list, log_file, log_identifier='')
Writes to the log file, registering the time and identifier.

Adds the content of to_print_list to the log_file, using the log_identifier to indicate where a given log entry
originated.

Parameters

• to_print_list (str() or list()) – string you want to print

• log_file (str()) – path of the log file you want to update

• log_identifier (str()) – identifier for the log

4.3 Models

4.3.1 Model for training

Model to perform parameter learning upon, usually QHL.

This is a disposable class which instatiates indepdendently from QuantumModelLearningAgent, trains the
model via qmla.remote_learn_model_parameters(), performs analysis on the trained model, summarises
the outcome of the training and sends a concise data packet to the database, before being deleted. The model training
refers to QHL, performed in conjunction with [QInfer], via update_model().

class qmla.ModelInstanceForLearning(model_id, model_name, qid, exploration_rule,
log_file, qmla_core_info_database=None,
host_name='localhost', port_number=6379, **kwargs)

Model used for parameter learning.

4.3. Models 33

Quantum Model Learning Agent Documentation, Release 1

Models are specified by their name; they can be separated into separate terms by splitting the name string
by ‘+’. Individual terms correspond to base matrices and are assigned parameters. Each term is assigned a
parameter probability distribution, or a prior distribution: this will be iteratively changed according to evidence
from experiments, and its mean gives the estimate for that parameter. Prior distributions are used by the QInfer
updater, and can be specified by the get_prior() method. The individual terms are parsed into matrices for
calculations. This is achieved by process_basic_operator(): different string syntax enable different
core oeprators.

Parameter estimation is done by update_model(). The final parameter estimates are set as the mean of the
posterior distribution after n_experiments wherein n_particles are sampled per experiment (these user definted
parameters are retrieved from qmla_core_info_dict). learned_info_dict() returns the pertinent learned
information.

Parameters

• model_id (int) – ID of the model to study

• model_name (str) – name of the model to be learned

• qid – ID of the QMLA instance

• exploration_rule (str) – name of exploration_strategy

• qmla_core_info_database (dict) – essential details about the QMLA instance
needed to learn/compare models. If None, this is retrieved instead from the redis database.

• host_name (str) – name of host server on which redis database exists.

• port_number (int) – port number unique to this QMLA instance on redis database

• log_file (str) – path of QMLA instance’s log file.

_consider_reallocate_resources()
Model might get less resources if it is deemed less complex than others

_finalise_learning()
Record and log final result.

_initialise_model_for_learning(model_name, qmla_core_info_database, **kwargs)
Preliminary set up necessary before parameter learning.

Start instances of classes used throughout, generally by calling the exploration strategy’s method,

• qinfer inferface: qinfer_model().

• updater is default QInfer.SMCUpdater.

• parameter distribution prior: get_prior().

Parameters

• model_name (str) – name of the model to be learned

• exploration_rule (str) – name of exploration_strategy

• qmla_core_info_database (dict) – essential details about the QMLA instance
needed to learn/compare models. If None, this is retrieved instead from the redis database.

_initialise_tracking_infrastructure()
Arrays, dictionaries etc for tracking learning across experiments

_model_plots_old()
Generate plots specific to this model. Which plots are drawn depends on the plot_level set in the
launch script.

34 Chapter 4. API Reference

http://docs.qinfer.org/en/latest/guide/smc.html#using-smcupdater

Quantum Model Learning Agent Documentation, Release 1

_plot_distributions()
For each parameter, plot: * prior distribution * posterior distributino * prior distribution for comparison, i.e.
posterior from learning recast as a unimodal normal * true parameters (if applicable) * learned parameter
estimates * covariance matrix between parameters (separate plot)

TODO add plotting levels: run, instance, model

_plot_dynamics()
Plots the dynamics reproduced by this model against system data.

_plot_learning_summary()

Plot summary of this model’s learning:

• parameter estimates and uncertainties

• volume of parameter distribution

• experimental times used

• (resample points superposed on the above)

• likelihoods of system/particles

• difference between system/particles’ likelihoods

_plot_posterior_mesh_pairwise()
Plots the posterior mesh as contours for each pair of parameters.

Mesh from qinfer.SMCUpdater.posterior_mesh

_plot_preliminary_preparation()
Prepare model for plots; make directory.

_record_experiment_updates(update_step, new_experiment=None, datum=None, up-
date_time=0)

Update tracking infrastructure.

_setup_qinfer_infrastructure()
Set up prior, model and updater (via QInfer) which are used to run Bayesian inference.

_store_prior()
Save the prior raw and as plot.

compute_likelihood_after_parameter_learning()
” Evaluate the model after parameter learning on independent evaluation data.

learned_info_dict()
Place essential information after learning has occured into a dict.

This is used to recreate the model for

• comparisons: ModelInstanceForComparison

• storage within the main QMLA environment ModelInstanceForStorage>.

log_print(to_print_list, log_identifier=None)
Wrapper for print_to_log()

log_print_debug(to_print_list)
Log print if global debug_log_print set to True.

update_model()
Run updates on model, corresponding to quantum Hamiltonian learning procedure.

This function is called on an instance of this model to run the entire QHL algorithm.

4.3. Models 35

Quantum Model Learning Agent Documentation, Release 1

Get datum corresponding to true system, where true system is either experimental or simulated, by call-
ing simulate_experiment on the QInfer.SMCUpdater. This datum is taken as the true expected value
for the system, which is used in the likelihood calucation in the Bayesian inference step. This is
done by calling the update method on the qinfer_updater. Effects of the update are then recorded
by _record_experiment_updates(), and terminate either upon convergence or after a fixed
num_experiments. Final details are recorded by _finalise_learning().

4.3.2 Model for comparisons

Model to use during Bayes factor comparisons.

This is a disposable class which reads the redis database to retrieve information about the trainng of the given model
ID. It then reconstructs the model, e.g. based on the final estimated mean of the parameter distribution. Then, it is
interfaced with a competing instance of the class within remote_bayes_factor_calculation(): the oppo-
nent’s experiments are used for further updates to the present model, such that the two models under consideration
have identical experiment records (at least partially whereupon the BF is based), allowing for meaningful comparison
among the two.

class qmla.ModelInstanceForComparison(model_id, qid, opponent,
qmla_core_info_database=None,
learned_model_info=None, host_name='localhost',
port_number=6379, log_file='QMD_log.log')

Model instances used for Bayes factor comparisons.

When Bayes factors are calculated remotely (ie on RQ workers), they require infrastructure to do calculations,
e.g. QInfer SMCUpdater instances. This class captures the minimum required to enable these calculations.
After learning, important data from ModelInstanceForLearning is stored on the redis database. This
class unpickles the useful information and generates new instances of the updater etc. to use in the comparison
calculations.

If run locally, qmla_core_info_database and learned_model_info can be passed directly to this class, to save
unpickling data from the redis database.

Parameters

• model_id (int) – ID of the model to study

• qid – ID of the QMLA instance

• qmla_core_info_database (dict) – essential details about the QMLA instance
needed to learn/compare models. If None, this is retrieved instead from the redis database.

• learned_model_info (dict) – result of learning, generated by
learned_info_dict().

• host_name (str) – name of host server on which redis database exists.

• port_number (int) – port number unique to this QMLA instance on redis database

• log_file (str) – path of QMLA instance’s log file.

log_print(to_print_list, log_identifier=None)
Wrapper for print_to_log()

log_print_debug(to_print_list)
Log print if global debug_log_print set to True.

plot_dynamics(ax, times)
Plot dynamics of this model after its parameter learning stage.

Parameters

36 Chapter 4. API Reference

http://docs.qinfer.org/en/latest/guide/smc.html#using-smcupdater
http://docs.qinfer.org/en/latest/apiref/smc.html?highlight=smcupdater#smcupdater-smc-based-particle-updater

Quantum Model Learning Agent Documentation, Release 1

• ax – matplotlib axis to plot on

• times (list) – times against which to plot

update_log_likelihood(new_times, new_experimental_params)

4.3.3 Model for storage

This object is much smaller than the other forms of the model, i.e. those used for training
(ModelInstanceForLearning) and comparisons (ModelInstanceForComparison), which retains only
the useful information for storage/analysis within the bigger picture in QuantumModelLearningAgent. It re-
trieves the succinct summaries of the training/comparisons pertainng to a single model which are stored on the redis
database, allowing for later anlaysis as required by QMLA.

class qmla.ModelInstanceForStorage(model_name, model_id, qid, plot_probes=None,
qmla_core_info_database=None, host_name='localhost',
port_number=6379, log_file='QMD_log.log', **kwargs)

Model stored in QMLA environment.

Retrieves data after model is trained remotely, so that qmla.QuantumModelLearningAgent can access
that data.

Parameters

• model_name (str) – name of model under study

• model_id (int) – ID of model which is unique to QMLA instance

• model_terms_matrices (np.array()) – list of matrices corresponding to the op-
erators which compose the model

• plot_probes (dict) – probes used in all plots for consistency

• qmla_core_info_database (dict) – essential details about the QMLA instance
needed to learn/compare models. If None, this is retrieved instead from the redis database.

• host_name (str) – name of host server on which redis database exists.

• port_number (int) – port number unique to this QMLA instance on redis database

• log_file (str) – path of QMLA instance’s log file.

compute_expectation_values(times=[])
Get the expectation values using the learned Hamiltonian.

Construct Hamiltonian from estimated learned parameters, and compute the expectation values, using the
same input state as used for plotting. Stores a dictionary of { t : expectation value }.

Parameters times (list) – times to use

log_print(to_print_list)
Wrapper for print_to_log()

model_update_learned_values(learned_info=None, **kwargs)
Get result of model learning and store within this object.

Every element stored by learned_info_dict() is stored as an attribute here.

Parameters learned_info (dict) – results of remote model learning if None, retrieved
from the redis database if not None, computed locally and passed

r_squared(times=None, min_time=0, max_time=None)
Compute and store r squared for given times.

4.3. Models 37

Quantum Model Learning Agent Documentation, Release 1

Parameters

• times (list) – times to use for calculation

• min_time (float) – minimum time to use for calculation

• min_time – maximum time to use for calculation

Return float final_r_squared r squared of the learned model against the times given

r_squared_by_epoch(times=None, min_time=0, max_time=None, num_points=10)
Compute and store r squared up to all times.

TODO incorporate as flag in r_squared() to store by epoch instead of separate fnc.

4.4 Implementation

4.4.1 Model learning

qmla.remote_learn_model_parameters(name, model_id, branch_id, exploration_rule,
qmla_core_info_dict=None, remote=False,
host_name='localhost', port_number=6379, qid=0,
log_file='rq_output.log')

Standalone function to perform Quantum Hamiltonian Learning on individual models.

Used in conjunction with redis databases so this calculation can be performed without any knowledge of the
QMLA instance.

Given model ids and names are used to instantiate the ModelInstanceForLearning class, which is then used for
learning the models parameters.

QMLA info is unpickled from a redis databse, containing true operator, params etc.

Once parameters are learned, we pickle the results to dictionaries held on a redis database which can be accessed
by other actors.

Parameters

• name (str) – model name string

• model_id (int) – unique model id

• branch_id (int) – QMLA branch where the model was generated

• exploration_rule (str) – string corresponding to a unique exploration strategy, used
by get_exploration_class to generate a ExplorationStrategy (or subclass) instance.

• qmla_core_info_dict (dict) – crucial data for QMLA, such as number of exper-
iments/particles etc. Default None: core info is stored on the redis database so can be
retrieved there on a server; if running locally, can be passed to save pickling.

• remote (bool) – whether QMLA is running remotely via RQ workers.

• host_name (str) – name of host server on which redis database exists.

• port_number (int) – this QMLA instance’s unique port number, on which redis
database exists.

• qid (int) – QMLA id, unique to a single instance within a run. Used to identify the redis
database corresponding to this instance.

• log_file (str) – Path of the log file.

38 Chapter 4. API Reference

Quantum Model Learning Agent Documentation, Release 1

4.4.2 Model comparison

qmla.remote_bayes_factor_calculation(model_a_id, model_b_id,
branch_id=None, bf_data_folder=None,
times_record='BayesFactorsTimes.txt',
check_db=False, bayes_threshold=1,
host_name='localhost', port_number=6379, qid=0,
log_file='rq_output.log')

Standalone function to compute Bayes factors.

Used in conjunction with redis databases so this calculation can be performed without any knowledge other than
model IDs. Data is unpickled from a redis databse, containing learned_model information, i.e. final parameters
etc. Given `model_id`s correspond to model names in the database, which are combined with the final learned
parameters to reconstruct model classes of complete learned models. Each model had been trained on a given set
of experimental parmaeters (times). The reconstructed model classes are updated according to the experimental
parameters of the opponent model, such that both models have underwent the same experiments. From these we
extract log likelihoods to compute the Bayes factor, BF(A,B). Models have a unique pair_id, simply (min(A,B),
max(A,B)). For BF(A,B) >> 1, A is deemed the winner; BF(A,B)<<1 deems B the winner. The result is then
stored redis databases:

• bayes_factors_db: BF(A,B)

• bayes_factors_winners_db: id of winning model

• active_branches_bayes: when complete, increase the count of complete pairs’ BF on the given branch.

Parameters

• model_a_id (int) – unique id for model A

• model_b_id (int) – unique id for model B

• branch_id (int) – unique id of branch the pair (A,B) are on

• or int num_times_to_use (str) – how many times, used during the training of
models A,B, to use during the BF calculation. Default ‘all’; if otherwise, Nt, keeps the most
recent Nt experiment times of A,B.

• bf_data_folder (str) – folder path to store information such as times used during
calculation, and plots of posterior marginals.

• times_record (str) – filename to store times used during calculation.

• check_db (bool) – look in redis databases to check if this pair’s BF has already been
computed; return pre-computed BF if so.

• bayes_threshold (float) – value to determine whether either model is superior
enough to “win” the comparison. If 1 < BF < threshold, neither win.

• host_name (str) – name of host server on which redis database exists.

• port_number (int) – this QMLA instance’s unique port number, on which redis
database exists.

• qid (int) – QMLA id, unique to a single instance within a run. Used to identify the redis
database corresponding to this instance.

• log_file (str) – Path of the log file.

4.4. Implementation 39

Quantum Model Learning Agent Documentation, Release 1

qmla.remote_bayes_factor.plot_dynamics_from_models(models, exp_msmts, bf_times,
bayes_factor, save_directory,
figure_format='png')

Plot the dynamics of the pair of models considered in a Bayes factor comparison.

Parameters

• models (ModelInstanceForLearning) – list of 2 models which were compared
during this calculation, [model_a, model_b].

• exp_msmts (dict) – times and expectation values for the system.

• bf_times (list) – Times used for the BF calculation

• bayes_factor (float) – Bayes factor between the two input models, to be read as
BF(model_a, model_b)

• save_directory (path) – path where the generated figure is to be saved

4.5 Exploration Strategies

ExplorationStrategy Exploration Strategies drive the progression of the QMLA algorithm, as described in
Exploration Strategy.

class qmla.exploration_strategies.ExplorationStrategy(exploration_rules,
true_model=None,
**kwargs)

User defined mechanism to control which models are considered by QMLA.

By changing the attributes, various aspects of QMLA are altered. A number of exploration strategy attributes
point to standalone methods available within QMLA, e.g. to generate probes according to a desired mechanism.
This allows the user to easily change functionality in a modular fashion. To develop a new exploration strategy,
users should read the definitions of all exploration strategy attributes listed in the various setup methods, and
ensure that the default are suitable for their system, or that they have replaced them in their custom exploration
strategy. The setup methods are:

• _setup_modular_subroutines()

• _setup_true_model()

• _setup_model_learning()

• _setup_tree_infrastructure()

• _setup_logistics()

check_tree_completed(spawn_step, **kwargs)
QMLA asks the exploration tree whether it has finished growing; the exploration tree queries the explo-
ration strategy through this method

exploration_strategy_finalise()
Steps needed to finalise the exploration strategy.

gaussian_prior(model_name, default_sigma=None, **kwargs)
Genearates a QInfer Gaussian distribution .

Given a model_name, deteremines the number of terms in the model, N. Generates a multivariate dis-
tribution with N dimensions. This is then used as the initial prior, which QHL uses to learn the model
parameters. By default, each parameter’s mean is the average of param_min and param_max, with sigma
= mean/4. This can be changed by specifying prior_specific_terms:

individual parameter’s means/sigmas can be given.

40 Chapter 4. API Reference

Quantum Model Learning Agent Documentation, Release 1

Parameters

• model_name (str) – Unique string representing a model.

• param_minimum (float) – Lower bound for distribution.

• param_maximum (float) – Upper bound for distribution.

• default_sigma (float) – Width of distribution desired. If None, defaults to 0.25 *
(param_max - param_min).

• prior_specific_terms (dict) – Individual parameter mean and sigma to enforce
in the distribution.

• log_file (str) – Path of the log file for logging errors.

• log_identifier (str) – Unique identifying sting for logging.

Return QInfer.Distribution dist distribution to be used as prior for parameter learning of the
named model.

generate_models(model_list, **kwargs)
Determine the next set of models for this exploration strategy.

This method is the main driver of QMLA. This method is called iteratively during the spawn stage of
QMLA, until check_tree_completed() returns True, for instance after a fixed depth of spawning.
In particular it is called by next_layer(), which either spawns on the ES tree, or prunes it.

Custom ESs must use this method to determine a set of models for QMLA to consider on the next layer (or
BranchQMLA) of QMLA. Such a set of models can be constructed based on the results of the previous
layers, or according to any logic required by the ES.

Custom methods to replace this have access to the following parameters, and must return the same format
of outputs. # TODO remove old/unused data passed to this method

Parameters

• model_list (list) – list of models on the previous QMLA layer, ordered by their
ranking on that layer.

• model_names_ids (dict) – map ID : model_name for all models in the
QuantumModelLearningAgent instance.

• called_by_branch (int) – the branch ID from which QMLA is spawning. This does
not always need to be set; it is mostly used by the ExplorationTree to track which
models/branches are parents/children of each other.

• branch_model_points (dict) – `` ID : number_wins `` number of wins of each
model in the previous branch.

• evaluation_log_likelihoods (dict) – `` ID : eval_log_likel `` foe each model
in the previous branch, where eval_log_likel is the log likelihood computed against
a set of validation data (i.e. not the data on which the model was trained.)

• model_dict (dict) – lists of models in the QMLA instance, organised by correspond-
ing number of qubits.

Return list model_names names of models as unique strings where terms in each
model are separated by +, and each term in each model is interpretable by
process_basic_operator().

generate_plot_probes(probe_maximum_number_qubits=None, **kwargs)
Call the ES’s plot_probes_generation_subroutine.

4.5. Exploration Strategies 41

Quantum Model Learning Agent Documentation, Release 1

Generates a set of probes against which to compute measurements for plotting purposes. The same probe
dict is used by all QMLA instances within a run for consistency.

Plot probe generation methods must adhere to the same rules as in generate_probes().

Parameters probe_maximum_number_qubits (int) – how many qubits to compose
probes up to. Can be left None, in which case assigned based on ES’s max_num_qubits,
or forced to a different value by passing to function call.

Return dict plot_probe_dict set of states against which all models are plotted over time in dy-
namics plots.

generate_probes(probe_maximum_number_qubits=None, store_probes=True, **kwargs)
Call the ES’s probe generation methods to set the system and simulator probes.

In general it is possible for the system and simulator to have different probe states (e.g. due to noise).
These can be generated from the same or different methods. if shared_probes is True, then
probe_generation_function is called once and the same probes are used for the system as simu-
lator. else simulator_probes_generation_subroutine is called for the simulator probes.

Probe generation methods must take parameters

max_num_qubits number of qubits to go up to when generating probes

num_probes number of probces to produce

Probe generation methods must return

probe_dict A set of probes with num_probes states for each of 1, . . . , N qubits up to
max_num_qubits. Probe dictionaries should have keys which are tuples of the number of
qubits and a probe ID, i.e. (probe_id, num_qubits).

Parameters

• probe_maximum_number_qubits (int) – how many qubits to compose probes up
to. Can be left None, in which case assigned based on ES’s max_num_qubits, or forced
to a different value by passing to function call.

• store_probes (bool) – whether to assign the generated probes to the ES instance. If
False, probe dict is just returned .

Returns dict new_probes (if not storing) dictionary of probes returned from probe generation
function, fulfilling the requirements outlined above.

get_expectation_value(**kwargs)
Call the ES’s measurement_probability_function to compute quantum likelihood.

Compute the probability of measuring in some basis, to be used as likelihood. The default probability is
that of the expectation value. Given an input state ‖𝜓⟩, 𝑃 (𝐻̂, 𝑡, ‖𝜓⟩) = ‖⟨‖𝑒−𝑖𝐻̂𝑡‖𝜓⟩‖2. However it is
possible to use alternative measurements, for instance corresponding to a physical measurement scheme
such as Hahn echo or Ramsey sequences.

Modular functions here must take as parameters

ham Hamiltonian to compute probability of

t time to evolve ham for

state proobe state to compute probability with

**kwargs any further inputs required can be passed as kwargs

42 Chapter 4. API Reference

Quantum Model Learning Agent Documentation, Release 1

Modular functions must return 𝑃 : the probability of measurement according to custom requirements,
to be used as likelihood in (interactive) quantum likelihood estimation.

get_heuristic(**kwargs)
Call the ES’s model_heuristic_function to build an experiment design heuristic class.

The heuristic class is called upon to design experiments to perform on the system during model learning.

Heuristics should inherit from BaseHeuristic. Details of requirements for custom heuristics can be
found in the defintion of BaseHeuristic. # TODO clear up - the heuristic is a class, not a function

get_measurements_by_time()
Measure the true model for a series of times.

In some experiment design heuristics, those prescribed times are the only ones available to the learning
procedure. Other heuristics allow the choice of any experimental time in principle. In either case, the
measurements generated here are computed using the plot_probes, which are shared by all QMLA
instances within the run. They are used for all dynamics plots.

get_prior(model_name, **kwargs)
Call the ES’s prior_distribution_subroutine function.

Parameters model_name (str) – model for which to construct a prior distribution

Return qinfer.Distribution prior N-dimensional distribution used by QInfer as the starting dis-
tribution for learning model parameters.

get_qinfer_model(**kwargs)
Call the ES’s qinfer_model_class to build the interface with QInfer used for model learning.

The default QInfer model class, and details of what to include in custom classes, can be found in
QInferModelQMLA.

get_true_parameters()
Retrieve parameters of the true model and use them to construct the true Hamiltonian.

True parameters are set once per run and shared by all instances within that run. Therefore the true
parameters are generated only once by set_shared_parameters(), and stored to a file which is
accessible by all instances within the run.

This method retrieves those shared true parameters and stores them for use by the
QuantumModelLearningAgent instance and its subsidiary models and methods. It then uses
the true parameters to construct true_hamiltonian for the ES.

latex_name(name, **kwargs)
Call the ES’s latex_string_map_subroutine.

Map a model name (string) to its LaTeX representation.

Parameters name (str) – name of model to map.

Return str latex_name representation of input model as LaTeX string.

name_branch_map(latex_mapping_file, **kwargs)
Assign branch to model for visual representation of ES as tree.

Only used for attempt to plot the QMLA instance as a single tree, which is often not suitable, so this is not
essential.

plot_dynamics_of_true_model(probe_dict, times)
Given a set of probes and times, plot their dynamics.

4.5. Exploration Strategies 43

Quantum Model Learning Agent Documentation, Release 1

set_specific_plots()
Over-writeable method to set the target plotting methods. Also place any manual plotting methods in here,
i.e. which require arguments.

tree_pruning(previous_prune_branch)
Get next model set through pruning.

true_model_latex()
Latex representation of true model.

property true_model_terms
Terms (as latex strings) which make up the true model

In order to initialise an ES, QMLA calls this function, which searches within the namespace of qmla/
exploration_strategies.

qmla.get_exploration_class(exploration_rules, **kwargs)
Get an instance of the class specified by the user which implements an exploration Strategy.

Instance of a ExplorationStrategy (or subclass). This is used to specify how QMLA proceeds, in partic-
ular by designing the next batch of models to test. Exploration Strategy is specified by the name passed to im-
plement_qmla in the launch script, through the command line flag exploration_strategy. This string is searched
for in the exploration_classes dictionary. New exploration strategies must be added here so that QMLA can find
them.

Parameters exploration_rules (str) – string corresponding to an exploration strategy

Params **kwargs**kwargs arguments required by the exploration strategy, passed directly to the
desired exploration strategy’s constructor.

Return ExplorationStrategy gr exploration strategy class instance

4.6 Modular functionality

As outlined in Modular functionality, some subroutines are modular; here we list some of the availbale implementa-
tions.

4.6.1 Experiment Design Hueristics

class qmla.shared_functionality.experiment_design_heuristics.ExperimentDesignHueristic(*args:
Any,
**kwargs:
Any)

Experiment Design Heuristic base class, to be inherited by specific implementations. This object has access to
the QInfer Updater and Model objects, so it can, e.g., sample from the particle distribution, to use these values
in the design of a new experiment.

Parameters

• updater (QInfer Updater object) – QInfer updater for SMC

• model_id (int) – ID of model under study, defaults to 1

• oplist (list, optional) – list of matrices representing the operators constituting
this model, defaults to None

• norm (str, optional) – type of norm to use, defaults to ‘Frobenius’

44 Chapter 4. API Reference

Quantum Model Learning Agent Documentation, Release 1

• inv_field (str, optional) – inversion field to use (legacy - should not matter) de-
faults to ‘x_’

• t_field (str, optional) – name of field corresponding to t, defaults to ‘t’

• maxiters (int, optional) – manimum number of iterations to attempt to find dis-
tinct particles from the distribution, defaults to 10

• other_fields (list, optional) – optional further fields, defaults to None

• inv_func (function, optional) – inverse function, used by QInfer, (legacy -
should not matter) defaults to identity

• t_func (function, optional) – function for computing t, defaults to identity

• log_file (str, optional) – path to log file, defaults to ‘qmla_log.log’

design_experiment(**kwargs)
Design an experiment. Children classes can overwrite this function to implement custom logic

for the deisggn of experiments.

finalise_heuristic(**kwargs)
Any functionality the user wishes to happen at the final call to the heuristic.

log_print(to_print_list)
Wrapper for print_to_log()

plot_heuristic_attributes(save_to_file, **kwargs)
Summarise the heuristic used for the model training through several plots.

volume of distribution at each experiment

time designed by heuristic for each experiment

effecitve sample size at each experiment, used to determine when to resample

Parameters save_to_file (path) – path to which the summary figure is stored

4.6.2 Expectation Values

qmla.shared_functionality.expectation_value_functions.default_expectation_value(ham,
t,
state,
log_file='qmla_log.log',
log_identifier='Expecation
Value')

Default probability calculation: | <state.transpose | e^{-iHt} | state> |**2

Returns the expectation value computed by evolving the input state with the provided Hamiltonian opera-
tor.

Parameters

• ham (np.array) – Hamiltonian needed for the time-evolution

• t (float) – Evolution time

• state (np.array) – Initial state to evolve and measure on

• log_file (str) – (optional) path of the log file

• log_identifier (str) – (optional) identifier for the log

4.6. Modular functionality 45

Quantum Model Learning Agent Documentation, Release 1

Returns probability of measuring the input state after Hamiltonian evolution

4.6.3 Prior probability distributions

qmla.shared_functionality.prior_distributions.gaussian_prior(model_name,
param_minimum=0,
param_maximum=1,
de-
fault_sigma=None,
ran-
dom_mean=False,
prior_specific_terms={},
log_file='qmd.log',
log_identifier=None,
**kwargs)

Genearates a QInfer Gaussian distribution .

Given a model_name, deteremines the number of terms in the model, N. Generates a multivariate distribution
with N dimensions. This is then used as the initial prior, which QHL uses to learn the model parameters. By
default, each parameter’s mean is the average of param_min and param_max, with sigma = mean/4. This can be
changed by specifying prior_specific_terms:

individual parameter’s means/sigmas can be given.

Parameters

• model_name (str) – Unique string representing a model.

• param_minimum (float) – Lower bound for distribution.

• param_maximum (float) – Upper bound for distribution.

• default_sigma (float) – Width of distribution desired. If None, defaults to 0.25 *
(param_max - param_min).

• prior_specific_terms (dict) – Individual parameter mean and sigma to enforce in
the distribution.

• log_file (str) – Path of the log file for logging errors.

• log_identifier (str) – Unique identifying sting for logging.

Return QInfer.Distribution dist distribution to be used as prior for parameter learning of the named
model.

4.6.4 QInfer Interface

class qmla.shared_functionality.qinfer_model_interface.QInferModelQMLA(*args:
Any,
**kwargs:
Any)

Interface between QMLA and QInfer.

QInfer is a library for performing Bayesian inference on quantum data for parameter estimation. It underlies the
Quantum Hamiltonian Learning subroutine employed within QMLA. Bayesian inference relies on comparisons
likelihoods of the target and candidate system. This class, specified by an exploration strategy, defines how
to compute the likelihood for the user’s system. Most functionality is inherited from QInfer, but methods
listed here are edited for QMLA’s needs. The likelihood function given here should suffice for most QMLA

46 Chapter 4. API Reference

Quantum Model Learning Agent Documentation, Release 1

implementations, though users may want to overwrite get_system_pr0_array and get_simulator_pr0_array, for
instance to specify which experimental data points to use.

Parameters

• model_name (str) – Unique string representing a model.

• modelparams (np.ndarray) – list of parameters to multiply by operators, unused for
QMLA reasons but required by QInfer.

• oplist (np.ndarray) – Set of operators whose sum defines the evolution Hamiltonian
(where each operator is associated with a distinct parameter).

• true_oplist (np.ndarray) – list of operators of the target system, used to construct
true hamiltonian.

• trueparams (np.ndarray) – list of parameters of the target system, used to construct
true hamiltonian.

• num_probes (int) – number of probes available in the probe sets, used to loop through
probe set

• probes_system (dict) – set of probe states to be used during training for the system,
indexed by (probe_id, num_qubits).

• probes_simulator (dict) – set of probe states to be used during training for the sim-
ulator, indexed by (probe_id, num_qubits). Usually the same as the system probes, but not
always.

• exploration_rule (str) – string corresponding to a unique exploration strategy, used
to generate an explorationStrategy_ instance.

• experimental_measurements (dict) – fixed measurements of the target system,
indexed by time.

• experimental_measurement_times (list) – times indexed in experimen-
tal_measurements.

• log_file (str) – Path of log file.

are_models_valid(modelparams)
Checks that the proposed models are valid.

Before setting new distribution after resampling, checks that all parameters have same sign as the initial
given parameter for that term. Otherwise, redraws the distribution. Modified from qinfer.

property expparams_dtype
Returns the dtype of an experiment parameter array.

For a model with single-parameter control, this will likely be a scalar dtype, such as "float64".
More generally, this can be an example of a record type, such as [('time', py.'float64'),
('axis', 'uint8')]. This property is assumed by inference engines to be constant for the lifetime
of a Model instance. In the context of QMLA the expparams_dtype are assumed to be a list of tuple where
the first element of the tuple identifies the parameters (including type) while the second element is the
actual type of of the parameter, typicaly a float. (Modified from Qinfer).

get_simulator_pr0_array(particles, times, probe)
Compute pr0 array for the simulator.

For user specific data, or method to compute simulator data, replace this function in explo-
ration_strategy.qinfer_model_subroutine.

Here we pass the candidate model’s operators and particles to default_pr0_from_modelparams_times_.

4.6. Modular functionality 47

Quantum Model Learning Agent Documentation, Release 1

Parameters

• times (list) – times to compute pr0 for; usually single element.

• particles (np.ndarry) – list of particles (parameter-lists), used to construct Hamil-
tonians.

Returns np.ndarray pr0 probabilities of measuring specified outcome

get_system_pr0_array(times, probe)
Compute pr0 array for the system. # TODO compute e^(-iH) once for true Hamiltonian and use that rather
than computing every step.

For user specific data, or method to compute system data, replace this function in explo-
ration_strategy.qinfer_model_subroutine.

Parameters times (list) – times to compute pr0 for; usually single element.

Returns np.ndarray pr0 probabilities of measuring specified outcome on system

likelihood(outcomes, modelparams, expparams)
Function to calculate likelihoods for all the particles

Inherited from Qinfer: Calculates the probability of each given outcome, conditioned on each given model
parameter vector and each given experimental control setting.

QMLA modifications: Given a list of experiments to perform, expparams, extract the time list. Typically
we use a single experiment (therefore single time) per update. QInfer passes particles as modelparams.
QMLA updates its knowledge in two steps:

• “simulate” an experiment (which can include outsourcing from here to perform a real experiment),

• update parameter distribution by comparing Np particles to the experimental result

It is important that the comparison is fair, meaning:

• The evolution time must be the same

• The probe state to evolve must be the same.

To simulate the experiment, we call QInfer’s simulate_experiment, which calls likelihood(), passing a sin-
gle particle. The update function calls simulate_experiment with Np particles. Therefore we know, when
a single particle is passed to likelihood, that we want to call the true system (we know the true parameters
and operators by the constructor of this class). So, when a single particle is detected, we circumvent QInfer
by triggering get_system_pr0_array. Users can overwrite this function as desired; by default it computes
true_hamiltonian, and computes the likelhood for the given time. When >1 particles are detected, pr0
is computed by constructing Np candidate Hamiltonians, each corresponding to a single particle, where
particles are chosen by Qinfer and given as modelparams. This is done through get_simulator_pr0_array.
We know calls to likelihood are coupled: one call for the system, and one for the update, which must use
the same probes. Therefore probes are indexed by a probe_id as well as their dimension. We track calls
to likelihood() in _a and increment the probe_id to pull every second call, to ensure the same probe_id is
used for system and simulator.

Parameters

• outcomes (np.ndarray) – outcomes of the experiments

• modelparams (np.ndarray) – values of the model parameters particles A shape
(n_particles, n_modelparams) array of model parameter vectors describing the
hypotheses for which the likelihood function is to be calculated.

48 Chapter 4. API Reference

Quantum Model Learning Agent Documentation, Release 1

• expparams (np.ndarray) – experimental parameters, A shape (n_experiments,
) array of experimental control settings, with dtype given by expparams_dtype,
describing the experiments from which the given outcomes were drawn.

Return type np.ndarray

Returns A three-index tensor L[i, j, k], where i is the outcome being considered, j in-
dexes which vector of model parameters was used, and where k indexes which experimental
parameters where used. Each element L[i, j, k] then corresponds to the likelihood
Pr(𝑑𝑖|𝑥𝑗 ; 𝑒𝑘).

log_print(to_print_list, log_identifier=None)
Writng to unique QMLA instance log.

log_print_debug(to_print_list)
Log print if global debug_mode set to True.

property modelparam_names
Returns the names of the various model parameters admitted by this model, formatted as LaTeX strings.
(Inherited from Qinfer)

property n_modelparams
Number of parameters in the specific model typically, in QMLA, we have one parameter per model.

n_outcomes(expparams)
Returns an array of dtype uint describing the number of outcomes for each experiment specified by
expparams.

Parameters expparams (numpy.ndarray) – Array of experimental parameters. This array
must be of dtype agreeing with the expparams_dtype property.

4.6.5 Latex name mapping

Some examples of working latex name maps are provided.

qmla.shared_functionality.latex_model_names.pauli_set_latex_name(name,
**kwargs)

Get latex string for model of Hubbard type.

Individual terms must be of the form, to implement operator t on qubit i of an N-qubit system:

pauliSet_i_t_dN

>>> model_name = 'pauliSet_1_x_d2+pauliSet_2_y_d2'
>>> pauli_set_latex_name(model_name)

Parameters name (str) – name of model or term to map

qmla.shared_functionality.latex_model_names.grouped_pauli_terms(name,
**kwargs)

qmla.shared_functionality.latex_model_names.fermi_hubbard_latex(name,
**kwargs)

Get latex string for model of Hubbard type.

Parameters name (str) – name of model or term to map

4.6. Modular functionality 49

Quantum Model Learning Agent Documentation, Release 1

50 Chapter 4. API Reference

CHAPTER

FIVE

APPLICATIONS

5.1 NV centre characterisation

The model searches presented in [GFK20] have exploration strategies as presented here.

5.1.1 Greedy search

class qmla.exploration_strategies.nv_centre_spin_characterisation.NVCentreExperimentalData(exploration_rules,
**kwargs)

Study experimental data.

Uses the same model generation/comparison strategies as SimulatedExperimentNVCentre, but targets
data measured from a real system. This is done by using an alternative qinfer_model_subroutine, which searches
in the dataset for the system’s likelihood, rather than computing it.

get_measurements_by_time()
Uses the experimental data as target system data.

class qmla.exploration_strategies.nv_centre_spin_characterisation.FullAccessNVCentre(exploration_rules,
**kwargs)

Exploration strategy for NV system described in experimental paper, assuming full access to the state so the
likelihood is based on :math`langle++ | e^{ -ihat{H(vec{x})} t } | ++ rangle`.

This is the base class for results presented in the experimental paper, namely Fig 2. The same model generation
strategy is used in each case (i), (ii), (iii): this ES is for (i) pure simulation.

generate_models(model_list, spawn_step, model_dict, **kwargs)
Determine the next set of models for this exploration strategy.

This method is the main driver of QMLA. This method is called iteratively during the spawn stage of
QMLA, until check_tree_completed() returns True, for instance after a fixed depth of spawning.
In particular it is called by next_layer(), which either spawns on the ES tree, or prunes it.

Custom ESs must use this method to determine a set of models for QMLA to consider on the next layer (or
BranchQMLA) of QMLA. Such a set of models can be constructed based on the results of the previous
layers, or according to any logic required by the ES.

Custom methods to replace this have access to the following parameters, and must return the same format
of outputs. # TODO remove old/unused data passed to this method

Parameters

• model_list (list) – list of models on the previous QMLA layer, ordered by their
ranking on that layer.

51

Quantum Model Learning Agent Documentation, Release 1

• model_names_ids (dict) – map ID : model_name for all models in the
QuantumModelLearningAgent instance.

• called_by_branch (int) – the branch ID from which QMLA is spawning. This does
not always need to be set; it is mostly used by the ExplorationTree to track which
models/branches are parents/children of each other.

• branch_model_points (dict) – `` ID : number_wins `` number of wins of each
model in the previous branch.

• evaluation_log_likelihoods (dict) – `` ID : eval_log_likel `` foe each model
in the previous branch, where eval_log_likel is the log likelihood computed against
a set of validation data (i.e. not the data on which the model was trained.)

• model_dict (dict) – lists of models in the QMLA instance, organised by correspond-
ing number of qubits.

Return list model_names names of models as unique strings where terms in each
model are separated by +, and each term in each model is interpretable by
process_basic_operator().

class qmla.exploration_strategies.nv_centre_spin_characterisation.SimulatedExperimentNVCentre(exploration_rules,
**kwargs)

Uses all the same functionality, growth etc as TieredGreedySearchNVCentre, but uses an expectation
value which traces out the environment, mimicing the Hahn echo measurement.

This is used to generate (ii) simulated data in the Nature Physics 2021 paper.

class qmla.exploration_strategies.nv_centre_spin_characterisation.TieredGreedySearchNVCentre(exploration_rules,
**kwargs)

Exploration strategy for NV system described in Nature Physics 2021 paper, assuming full access to the state so
the likelihood is based on ⟨+ + |𝑒−𝑖 ^𝐻(𝑥)𝑡| + +⟩.

This is the base class for results presented in the experimental paper, namely Fig 2. The same model generation
strategy is used in each case (i), (ii), (iii):

this ES is for (i) pure simulation.

check_tree_completed(spawn_step, **kwargs)
QMLA asks the exploration tree whether it has finished growing; the exploration tree queries the explo-
ration strategy through this method

generate_models(model_list, **kwargs)
Overwrites qmla.QuantumModelLearningAgent.generate_models().

Constructs models in tiers, where each tier is explored greedily, and only the strongest model from the tier
is progressed as the seed model for the subsequent tier.

5.1.2 Genetic algorithm for spin bath

class qmla.exploration_strategies.nv_centre_spin_characterisation.nature_physics_2021.NVCentreGenticAlgorithmPrelearnedParameters(exploration_rules,
true_model=None,
**kwargs)

Exploration strategy for studying large model space of NV centre through a genetic algorithm.

Model generation is through the genetic algorithm exploration strategy, Genetic. This Exploration Strategy
sets up the true model as an NV centre spin interacting with a number of nuclei, and makes a wider number of
nuceli searchable by the genetic algorithm. The NV centre is approximated by the Gali approximation [SCG13].
Candidate models are assumed to have been learned extremely well by a parameter esimation algorithm, which
may be unrealistic in some cases. In the genetic algorithm, to assess candidate models, we use an objective

52 Chapter 5. Applications

Quantum Model Learning Agent Documentation, Release 1

function which computes the average residual between the candidate and the system’s dynamics, against a
representative dataset.

_get_secular_approx_true_params(num_qubits=2, total_num_qubits=5)
Using the secular approximation, define true parameters for all present terms.

Parameters

• num_qubits (int) – number of qubits in the target model

• total_num_qubits (int) – number of qubits of the search space, i.e. terms will be
defined in this dimension, even if the system is not expected to be this large.

Returns dict true_params frequencies of each term to include in the true model

_set_true_params()
Set up the target model: call a series of subroutines to define the true model, as well as setting the param-
eters to represent the physics appropriately.

_setup_available_terms_gali_model(n_qubits=2, available_axes=['z'])
Generates the set of terms to include in the genetic algorithm.

Terms are stored as an attribute of the class.

Parameters

• n_qubits (int) – number of qubits to construct terms up to

• available_axes (lsit) – axes about which to generate terms, under the Gali ap-
proximation

_setup_prior_by_parameters()
Constructs the prior distribution to assign true parameters in the model.

These are set in the gaussian_prior_means_and_widths attribute of this exploration strategy class.

generate_evaluation_data(num_times=100, **kwargs)
Generates sequential, equally spaced times for evaluating the candidate models against.

Parameters num_times (int) – number of datapoints to generate

Returns dict eval_data set of experiments for model evaluation

get_evaluation_prior(model_name, estimated_params, cov_mt, **kwargs)
Generate a QInfer distribution representing the trained model’s paramterisation, in order to evaluate that
model.

Parameters

• model_name (str) – string representing the candidate model

• estimated_params (dict) – average values of the posterior distribution after train-
ing, representing the parameter estimates for the model

• cov_mt (np.array) – covariance matrix, i.e. the relationship between parameters after
training

get_prior(model_name, **kwargs)
Given a candidate model, constructs a very thin prior.

This is done to skip the model training stage, and assumes the training has performed extremely well. This
method is called by QMLA in constructing candidate models.

Parameters model_name (str) – string representing the model which is being tested.

5.1. NV centre characterisation 53

Quantum Model Learning Agent Documentation, Release 1

Returns prior QInfer object, used for sampling parameter values when considering the given
model

5.2 Genetic Algorithms

Genetic algorithms can be used within the Exploration Strategy of QMLA; here we provide a genetic algorithm frame-
work which can be plugged in.

class qmla.shared_functionality.genetic_algorithm.GeneticAlgorithmQMLA(genes,
num_sites,
true_model=None,
base_terms=['x',
'y',
'z'],
se-
lec-
tion_method='roulette',
crossover_method='one_point',
mu-
ta-
tion_method='element_wise',
mu-
ta-
tion_probability=0.1,
se-
lec-
tion_truncation_rate=0.5,
num_protected_elite_models=2,
un-
changed_elite_num_generations_cutoff=5,
log_file=None,
**kwargs)

Standalone genetic algorithm implementation for integration with qmla.QuantumModelLearningAgent.

This class works with the ExplorationStrategy to construct models according to the genetic strategy.

Parameters

• genes (list) – individual terms which can be combined to form chromosomes

• num_sites (int) – maximum dimension permitted in model search

• true_model (str) – target model. if None, set at random from space of valid models.

• base_terms (list) – deprecated TODO remove

• selection_method (str) – mechanism through which to select chromosomes as par-
ents. Currently only ‘roulette’ available, but the framework should facilitate alternatives.

• crossover_method (str) – mechanism through which parent chromosomes are com-
bined to form offspring. Currently only ‘one_point’ available, but the framework should
facilitate alternatives.

• mutation_method (str) – mechanism through which to perform chromosome muta-
tion Currently only ‘element_wise’ available, but the framework should facilitate alterna-
tives.

54 Chapter 5. Applications

Quantum Model Learning Agent Documentation, Release 1

• mutation_probability (float) – rate with which the mutation mechanism incurs
mutation.

• selection_truncation_rate (float) – fraction of models to retain as viable par-
ents to the subsequent generation; the lower-rated other models are discarded.

• num_protected_elite_models (int) – number of models to automatically admit
to the subsequent generation.

• unchanged_elite_num_generations_cutoff (int) – after this number of gen-
erations, if the top model has not changed, the model search is terminated.

• log_file (str) – path of QMLA instance’s log file.

basic_pair_selection(chromosome_selection_probabilities, **kwargs)
Mechanism for selecting two models from the database of potential parents.

Parameters chromosome_selection_probabilities (pd.DataFrame) – database
indicating the probability that every valid pair of parents should be selected.

Return tuple selected_chromosomes two models

chromosome_f_score(chromosome)
Get the F score of a candidate model from its chromosome representation.

Parameters chromosome (np.array) – representation of candidate model

Returns float f_score F score, between 0 and 1, indicating how many terms overlap between the
candidate and target models.

chromosome_string(c)
Map a chromosome array to a string.

consolidate_generation(model_fitnesses, **kwargs)
Following the training of all models on a generation, consolidate that generation.

This involves determining the strongest models from the generation, and constructing the database of
parent-pairs and their associated selection probabilities.

Parameters model_fitnesses (dict) – the fitness of each model in this generation ac-
cording to the chosen objective function.

crossover(**kwargs)
Wrapper for crossover mechanism.

This method assumes only 2 chromosomes to crossover and passes them to the method set as
self.crossover_method, which can be easily replaced to facilitate alternative crossover schemes.

element_wise_mutation(**kwargs)
Probabilistically mutate each gene independently.

elite_ranking_top_n_models(model_fitnesses, **kwargs)
Get the top N models, and store info on the elite models to date.

Parameters model_fitnesses (dict) – the fitness of each model in this generation ac-
cording to the chosen objective function.

genetic_algorithm_step(model_fitnesses, **kwargs)
Perform a complete step of the genetic algorithm, assuming all of the required steps have been performed.
That is, the database for parent selection must already be available.

Parameters model_fitnesses (dict) – the fitness of each model in this generation ac-
cording to the chosen objective function.

Returns list new_models set of models to place on the next generation.

5.2. Genetic Algorithms 55

Quantum Model Learning Agent Documentation, Release 1

get_base_chromosome()
Creates basic chromosome, i.e. with all genes set to 0.

get_elite_models(**kwargs)

Wrapper for elite model selection method, here set to self.elite_ranking_top_n_models.

get_pair_selection_order()
Use the probabilities of parental selection to define the order in which to generate offspring. It is cheaper
to perform this once than call the database repeatedly.

Return list pair_selection_order list of tuples of the order in which to pass the model pairs to
the crossover mechanism to generate offspring

get_selection_probabilities(**kwargs)
Wrapper for parent selection function, here set to self.truncate_to_top_half.

log_print(to_print_list)
Wrapper for print_to_log()

map_chromosome_to_model(chromosome)
Given a chromosome, get the corresponding model.

Parameters chromosome (np.array) – chromosome representing a candidate model

Returns str model_string name of the corresponding model

map_model_to_chromosome(model)
Given a model, get the corresponding chromosome.

Parameters model (str) – name of candidate model

Returns np.array chromosome array of ones and zeros indicating which genes are active in the
model

model_f_score(model_name)
Get the F score of a candidate model.

Parameters model_name (str) – name of candidate model

Returns float f_score F score, between 0 and 1, indicating how many terms overlap between the
candidate and target models.

mutation(**kwargs)
Wrapper for mutation mechanism. All input arguments to the mutation method are passed directly to the
nominated mutation function, set as self.mutation_method.

one_point_crossover(**kwargs)
Crossover two chromosomes about a single gene.

Input two chromosomes, and selection (a dict) in kwargs. selection contains chromosome_1 and
chromosome_2, as well as a dict called other_data containing cut, which is the position about
which to crossover the two chromosomes.

prepare_chromosome_pair_dataframe(chromosome_probabilities, force_mutation=False)
Given a set of individual chromosome fitnesses, generate database of pairs of parent chromosomes, with
probability proportional to the fitness of both parents.

rand_model_f()
Generate a random model chromosome and evaluate its F score.

random_initial_models(num_models=5)
Generate random models from the space of valid candidates.

Parameters num_models (int) – number of candidates to generate

56 Chapter 5. Applications

Quantum Model Learning Agent Documentation, Release 1

Returns list new_models the randomly generated model names

random_models_sorted_by_f_score(num_models=14)
Generate a set of random models and sort them by F score.

selection(**kwargs)
Wrapper for user’s selected selection method.

Whatever method is called must return

• prescribed_chromosomes

• chromosomes_for_crossover - pairs

truncate_to_top_half(model_fitnesses, **kwargs)
Retain only the top-performing half of models considered at this generation, for consideration as parents
to offspring on the subsequent generation.

Parameters model_fitnesses (dict) – the fitness of each model in this generation ac-
cording to the chosen objective function.

5.2.1 Genetic Exploration Strategy

A base class for genetic algorithm incorporated into the Exploration Strategy.

class qmla.exploration_strategies.genetic_algorithms.genetic_exploration_strategy.Genetic(exploration_rules,
genes,
true_model,
**kwargs)

Exploration Strategy where the model search is mediated through a genetic algorithm. Genetic algorithm is
implemented through qmla.GeneticAlgorithmQMLA. This forms the base class for genetic algorithm
applications within QMLA.

Parameters

• exploration_rules (str) – name of exploration strategy used

• genes (list) – terms which are permitted in the model search, which become genes in
the chromomsomes of the genetic algorithm

• true_model (str) – name of the target model.

__plot_gene_pool_progression()
Succinct representation of the progression of gene pool with respect to F score.

_plot_correlation_fitness_with_f_score(save_to_file=None)
Show how the fitness of models at each generation progress in terms of F score.

_plot_fitness_v_fscore()
Plot fitness against f score

_plot_fitness_v_fscore_by_generation()
Plot fitness vs f score throughout generations of the genetic algorithm.

_plot_fitness_v_generation(save_to_file=None)
Plot progression of fitness against generations of the genetic algorithm.

_plot_gene_pool()
Show the F scores of all models in all generations

_plot_model_ratings()
Plot ratings of models on all generations, as determined by the RatingSystem

5.2. Genetic Algorithms 57

Quantum Model Learning Agent Documentation, Release 1

_plot_selection_probabilities()
Plot pie charts of the selection probabilities of prospective parents at each generation. Models are signified
by their F score.

analyse_generation(model_points, model_names_ids, **kwargs)
Following a complete generation of the genetic algorithm, perform all necessary processing to enable
construction of next set of models.

Parameters

• model_points (dict) – the number of Bayes factor comparisons for which each can-
didate within the generation was deemed superior against a contemporary model

• model_names_ids (dict) – mapping between models’ names and their IDs from
the QMLA environment; this enables analaysing further data passed from QMLA within
kwargs.

check_tree_completed(spawn_step, **kwargs)
Genetic algorithm specific version of qmla.ExplorationStrategy.
check_tree_completed().

check_tree_pruned(**kwargs)
Genetic algorithm specific version of qmla.ExplorationStrategy.check_tree_pruned().

exploration_strategy_finalise()
Genetic algorithm specific version of qmla.ExplorationStrategy.
exploration_strategy_finalise().

f_score_from_chromosome_string(chromosome)
F1 score between chromosome and true model

f_score_model_comparison(test_model, target_model=None, beta=1)
Get F score of candidate model, measure of overlap between the terms of the candidate and target model

Parameters

• test_model (str) – name of candidate model

• target_model (str) – name of target model, if None, assumed that target is
self.true_model

• beta (float) – relative importance of precision to sensitivity. in general this is F-beta
score, usually beta = 1

static gene_pool_progression(gene_pool, ax, f_score_cmap=None, draw_cbar=True,
cbar_ax=None)

Method for plotting succinct summary of progression of gene pool with respect to F score.

generate_models(model_list, **kwargs)
Model generation using genetic algorithm.

Follows rules of generate_models().

hamming_distance_model_comparison(test_model, target_model=None)
Compare test_model with target_model by Hamming distance

nominate_champions()
Choose model with highest fitness on final generation

plot_generational_metrics()
Show various metrics across all generations

set_specific_plots(**kwargs)
Genetic algorithm specific version of qmla.ExplorationStrategy.set_specific_plots().

58 Chapter 5. Applications

CHAPTER

SIX

TUTORIAL

Here we provide a complete example of how to run the framework, including how to implement a custom Exploration
Strategy (ES), and generate/interpret analysis.

6.1 Installation

First, fork the QMLA codebase from [QMLA] to a Github user account (referred to as username in the following
code snippet). Now, we must download the code base and ensure it runs properly; these instructions are implemented
via the command line. Notes:

1. these instructions are tested for Linux and presumed to work on Mac, but untested on Windows. It is likely some
of the underlying software (redis servers) can not be installed on Windows, so running on Windows Subsystem
for Linux is advised.

2. Python development tools are required by some packages: if the pip install -r requirements fail,
here are some possible solutions.

3. Here we recommend using a virtual environment to manage the QMLA ecosystem; a resource for managing
virtual environments is virtualenvwrapper. If using virtualenvwrapper, generate and activate a venv and
disregard step 2 below.

4. In the following installation steps, ensure to replace python3.6with your preferred Python version. Python3.6
(or above) is preferred.

The steps of preparing the codebase are

1. install redis

2. create a virtual Python environment for installing QMLA dependencies without damaging other parts of the
user’s environment

3. download the [QMLA] codebase from the forked Github repository

4. install packages upon which QMLA depends.

Install redis (database broker)
sudo apt update
sudo apt install redis-server

Ensure access to python dev tools
sudo apt-get install python3.6-dev

make directory for QMLA
cd
mkdir qmla_test

(continues on next page)

59

https://stackoverflow.com/questions/21530577/fatal-error-python-h-no-such-file-or-directory
https://realpython.com/python-virtual-environments-a-primer/

Quantum Model Learning Agent Documentation, Release 1

(continued from previous page)

cd qmla_test

make Python virtual environment for QMLA
note: change Python3.6 to desired version
sudo apt-get install python3.6-venv
python3.6 -m venv qmla-env
source qmla-env/bin/activate

Download QMLA (!! REPLACE username !!)
git clone --depth 1 https://github.com/username/QMLA.git

Install dependencies
Note some packages demand others are installed first,
so are in a separate file.
cd QMLA
pip install -r requirements.txt
pip install -r requirements_further.txt

Note there may be a problem with some packages in the arising from the attempt to install them all through a single
call to pip install. Ensure these are all installed before proceeding. When all of the requirements are installed,
test that the framework runs. QMLA uses databases to store intermittent data: we must manually initialise the database.
Run the following (note: here we list redis-4.0.8, but this must be corrected to reflect the version installed on the
user’s machine in the above setup section):

~/redis-4.0.8/src/redis-server

which should give something like Fig. 6.1.

Fig. 6.1: Terminal running redis-server.

In a text editor, open QMLA/launch/local_launch.sh, the script used to run the codebase; here we will ensure
that we are running the algorithm, with 5 experiments and 20 particles, on the ES named TestInstall. Ensure the
first few lines of read:

#!/bin/bash

--
QMLA run configuration
--
num_instances=2 # number of instances in run
run_qhl=0 # perform QHL on known (true) model
run_qhl_multi_model=0 # perform QHL for defined list of models
experiments=2 # number of experiments
particles=10 # number of particles
plot_level=5

(continues on next page)

60 Chapter 6. Tutorial

Quantum Model Learning Agent Documentation, Release 1

(continued from previous page)

--
Choose an exploration strategy
This will determine how QMLA proceeds.
--
exploration_strategy="TestInstall"

Ensure the terminal running redis is kept active, and open a separate terminal window. We must activate the Python
virtual environment configured for QMLA, which we set up above. Then, navigate to the QMLA directory, and launch:

activate the QMLA Python virtual environment
source qmla_test/qmla-env/bin/activate

move to the QMLA directory
cd qmla_test/QMLA
Run QMLA
cd launch
./local_launch.sh

There may be numerous warnings, but they should not affect whether QMLA has succeeded; QMLA will any raise
significant error. Assuming the run has completed successfully, QMLA stores the run’s results in a subdirectory named
by the date and time it was started. For example, if the was initialised on January 1𝑠𝑡 at 01:23, navigate to the
corresponding directory by

cd results/Jan_01/01_23

For now it is sufficient to notice that the code has run successfully: it should have generated (in Jan_01/01_23)
files like storage_001.p and results_001.p.

6.2 Custom exploration strategy

Next, we design a basic ES, for the purpose of demonstrating how to run the algorithm. Exploration strategies are
placed in the directory qmla/exploration_strategies. To make a new one, navigate to the exploration
strategies directory, make a new subdirectory, and copy the template file.

cd ~/qmla_test/QMLA/exploration_strategies/
mkdir custom_es

Copy template file into example
cp template.py custom_es/example.py
cd custom_es

Ensure QMLA will know where to find the ES by importing everything from the custom ES directory into to the
main module. Then, in the directory, make a file called which imports the new ES from the file. To add any further
exploration strategies inside the directory custom_es, include them in the custom __init__.py, and they will
automatically be available to QMLA.

inside qmla/exploration_strategies/custom_es
__init__.py
from qmla.exploration_strategies.custom_es.example import *

inside qmla/exploration_strategies, add to the existing

(continues on next page)

6.2. Custom exploration strategy 61

Quantum Model Learning Agent Documentation, Release 1

(continued from previous page)

__init__.py
from qmla.exploration_strategies.custom_es import *

Now, change the structure (and name) of the ES inside custom_es/example.py. Say we wish to target the true
model

𝛼 = (𝛼1,2 𝛼2,3 𝛼3,4)

𝑇 =
(︀
𝜎̂1
𝑧 ⊗ 𝜎̂2

𝑧 𝜎̂2
𝑧 ⊗ 𝜎̂3

𝑧 𝜎̂3
𝑧 ⊗ 𝜎̂4

𝑧

)︀
=⇒ 𝐻̂0 = 𝜎̂(1,2)

𝑧 𝜎̂(2,3)
𝑧 𝜎̂(3,4)

𝑧

(6.1)

QMLA interprets models as strings, where terms are separated by +, and parameters are implicit. So the target model
in (6.1) will be given by

pauliSet_1J2_zJz_d4+pauliSet_2J3_zJz_d4+pauliSet_3J4_zJz_d4

Adapting the template ES slightly, we can define a model generation strategy with a small number of hard coded
candidate models introduced at the first branch of the exploration tree. We will also set the parameters of the terms
which are present in 𝐻̂0, as well as the range in which to search parameters. Keeping the import``s at the
top of the ``example.py, rewrite the ES as:

class ExampleBasic(
exploration_strategy.ExplorationStrategy

):

def __init__(
self,
exploration_rules,
true_model=None,

**kwargs
):

self.true_model = 'pauliSet_1J2_zJz_d4+pauliSet_2J3_zJz_d4+pauliSet_3J4_zJz_d4
→˓'

super().__init__(
exploration_rules=exploration_rules,
true_model=self.true_model,

**kwargs
)

self.initial_models = None
self.true_model_terms_params = {

'pauliSet_1J2_zJz_d4' : 2.5,
'pauliSet_2J3_zJz_d4' : 7.5,
'pauliSet_3J4_zJz_d4' : 3.5,

}
self.tree_completed_initially = True
self.min_param = 0
self.max_param = 10

def generate_models(self, **kwargs):

self.log_print(["Generating models; spawn step {}".format(self.spawn_step)])
if self.spawn_step == 0:

chains up to 4 sites
new_models = [

(continues on next page)

62 Chapter 6. Tutorial

Quantum Model Learning Agent Documentation, Release 1

(continued from previous page)

'pauliSet_1J2_zJz_d4',
'pauliSet_1J2_zJz_d4+pauliSet_2J3_zJz_d4',
'pauliSet_1J2_zJz_d4+pauliSet_2J3_zJz_d4+pauliSet_3J4_zJz_d4',

]
self.spawn_stage.append('Complete')

return new_models

To run the example ES for a meaningful test, return to the local_launch.sh script above, but change some of the
settings:

particles=2000
experiments=500
run_qhl=1
exploration_strategy=ExampleBasic

Run locally again then move to the results directory as in as in Installation. Note this will take up to 15 minutes to
run. This can be reduced by lowering the values of particles, experiments, which is sufficient for testing but
note that the outcomes will be less effective than those presented in the figures of this section.

6.3 Analysis

QMLA stores results and generates plots over the entire range of the algorithm, i.e. the run, instance and models.
The depth of analysis performed automatically is set by the user control plot_level in local_launch.sh;
for plot_level=1 , only the most crucial figures are generated, while plot_level=5 generates plots for every
individual model considered. For model searches across large model spaces and/or considering many candidates,
excessive plotting can cause considerable slow-down, so users should be careful to generate plots only to the degree
they will be useful. Next we show some examples of the available plots.

6.3.1 Model analysis

We have just run QHL for the model in (6.1) for a single instance, using a reasonable number of particles and ex-
periments, so we expect to have trained the model well. Instance-level results are stored (e.g. for the instance with
qmla_id=1) in Jan_01/01_23/instances/qmla_1. Individual models’ insights can be found in , e.g. the
model’s leaning_summary (Fig. 6.2), and in dynamics (Fig. 6.3).

6.3.2 Instance analysis

Now we can run the full QMLA algorithm, i.e. train several models and determine the most suitable. QMLA will
call the method of the ES, set in Installation, which tells QMLA to construct three models on the first branch, then
terminate the search. Here we need to train and compare all models so it takes considerably longer to run: for the
purpose of testing, we reduce the resources so the entire algorithm runs in about 15 minutes. Some applications will
require significantly more resources to learn effectively. In realistic cases, these processes are run in parallel, as we
will cover in Parallel implementation.

Reconfigure a subset of the settings in the local_launch.sh script and run it again:

experiments=250
particles=1000
run_qhl=0
exploration_strategy=ExampleBasic

6.3. Analysis 63

Quantum Model Learning Agent Documentation, Release 1

Fig. 6.2: The outcome of QHL for the given model. Subfigures (a)-(c) show the estimates of the parameters. (d) shows
the total parameterisation volume against experiments trained upon, along with the evolution times used for those
experiments.

Fig. 6.3: The model’s attempt at reproducing dynamics from 𝐻̂0.

64 Chapter 6. Tutorial

Quantum Model Learning Agent Documentation, Release 1

In the corresponding results directory, navigate to instances/qmla_1, where instance level analysis are available.

cd results/Jan_01/01_23/instances/qmla_1

Figures of interest here show the composition of the models (Fig. 6.4), as well as the BF between candidates (Fig.
6.5). Individual model comparisons – i.e. BF – are shown in Fig. 6.6, with the dynamics of all candidates shown in
Fig. 6.7. The probes used during the training of all candidates are also plotted (Fig. 6.8).

Fig. 6.4: composition_of_models: constituent terms of all considered models, indexed by their model IDs.
Here model 3 is 𝐻̂0

6.3.3 Run analysis

Considering a number of instances together is a run. In general, this is the level of analysis of most interest: an
individual instance is liable to errors due to the probabilistic nature of the model training and generation subroutines.
On average, however, we expect those elements to perform well, so across a significant number of instances,we expect
the average outcomes to be meaningful.

Each results directory has an script to generate plots at the run level.

cd results/Jan_01/01_23
./analyse.sh

Run level analysis are held in the main results directory and several sub-directories created by the script. For testing,
here we recommend running a number of instances with very few resources so that the test finishes quickly (about ten
minutes). The results will therefore be meaningless, but allow for elucidation of the resultant plots. First, reconfigure
some settings of local_launch.sh and launch again.

num_instances=10
experiments=20
particles=100
run_qhl=0
exploration_strategy=ExampleBasic

Some of the generated analysis are shown in the following figures. The number of instances for which each model was
deemed champion, i.e. their win rates are given in Fig. 6.9. The top models, i.e. those with highest win rates, analysed

6.3. Analysis 65

Quantum Model Learning Agent Documentation, Release 1

Fig. 6.5: bayes_factors: comparisons between all models are read as 𝐵𝑖,𝑗 where 𝑖 is the model ID on the y-axis
and 𝑗 on the x-axis. Thus𝐵𝑖𝑗 > 0 (< 0) indicates 𝐻̂𝑖 (𝐻̂𝑗), i.e. the model on the y-axis (x-axis) is the stronger model.

Fig. 6.6: comparisons/BF_1_3: direct comparison between models with IDs 1 and 3, showing their reproduction
of the system dynamics (red dots, 𝑄, as well as the times (experiments) against which the BF was calculated.

66 Chapter 6. Tutorial

Quantum Model Learning Agent Documentation, Release 1

Fig. 6.7: branches/dynamics_branch_1: dynamics of all models considered on the branch compared with
system dynamics (red dots, 𝑄)

Fig. 6.8: probes_bloch_sphere: probes used for training models in this instance (only showing 1-qubit ver-
sions).

6.3. Analysis 67

Quantum Model Learning Agent Documentation, Release 1

further: the average parameter estimation progression for 𝐻̂0 – including only the instances where 𝐻̂0 was deemed
champion – are shown in Fig. 6.10. Irrespecitve of the champion models, the rate with which each term is found in the
champion model (𝑡 ∈ 𝐻̂ ′) indicates the likelihood that the term is really present; these rates – along with the parameter
values learned – are shown in Fig. 6.11. The champion model from each instance can attempt to reproduce system
dynamics: we group together these reproductions for each model in Fig. 6.12.

Fig. 6.9: performace/model_wins: number of instance wins achieved by each model.

Fig. 6.10: champion_models/params_params_pauliSet_1J2_zJz_d4+pauliSet_2J3_zJz_d4+pauliSet_3J4_zJz_d4:
parameter estimation progression for the true model, only for the instances where it was deemed champion.

6.4 Parallel implementation

We provide utility to run QMLA on parallel processes. Individual models’ training can run in parallel, as well as
the calculation of BF between models. The provided script is designed for PBS job scheduler running on a compute
cluster. It will require a few adjustments to match the system being used. Overall, though, it has mostly a similar
structure as the script used above.

QMLA must be downloaded on the compute cluster as in Installation; this can be a new fork of the repository, though
it is sensible to test installation locally as described in this chapter so far, then push that version, including the new ES,
to Github, and cloning the latest version. It is again advisable to create a Python virtual environment in order to isolate
QMLA and its dependencies (indeed this is sensibel for any Python development project). Open the parallel launch
script, QMLA/launch/parallel_launch.sh, and prepare the first few lines as

#!/bin/bash

--
QMLA run configuration
--

(continues on next page)

68 Chapter 6. Tutorial

Quantum Model Learning Agent Documentation, Release 1

Fig. 6.11: champion_models/terms_and_params: histogram of parameter values found for each term which
appears in any champion model, with the true parameter (𝛼0) in red and the median learned parameter (𝛼̄′) in blue.

Fig. 6.12: performance/dynamics: median dynamics of the champion models. The models which won most
instances are shown together in the top panel, and individually in the lower panels. The median dynamics from the
models’ learnings in its winning instances are shown, with the shaded region indicating the 66% confidence region.

6.4. Parallel implementation 69

Quantum Model Learning Agent Documentation, Release 1

(continued from previous page)

num_instances=10 # number of instances in run
run_qhl=0 # perform QHL on known (true) model
run_qhl_multi_model=0 # perform QHL for defined list of models
experiments=250
particles=1000
plot_level=5

--
Choose an exploration strategy
This will determine how QMLA proceeds.
--
exploration_strategy="ExampleBasic"

When submitting jobs to schedulers like PBS, we must specify the time required, so that it can determine a fair distribu-
tion of resources among users. We must therefore estimate the time it will take for an instance to complete: clearly this
is strongly dependent on the numbers of experiments (𝑁𝑒) and particles (𝑁𝑝), and the number of models which must
be trained. QMLA attempts to determine a reasonable time to request based on the max_num_models_by_shape
attribute of the ES, by calling QMLA/scripts/time required calculation.py. In practice, this can be
difficult to set perfectly, so the attribute of the ES can be used to correct for heavily over- or under-estimated time
requests. Instances are run in parallel, and each instance trains/compares models in parallel. The number of processes
to request, 𝑁𝑐 for each instance is set as in the ES. Then, if there are 𝑁𝑟 instances in the run, we will be requesting the
job scheduler to admit 𝑁𝑟 distinct jobs, each requiring 𝑁𝑐 processes, for the time specified.

The parallel_launch script works together with QMLA/launch/run_single_qmla_instance.sh,
though note a number of steps in the latter are configured to the cluster and may need to be adapted. In particular, the
first command is used to load the redis utility, and later lines are used to initialise a redis server. These commands will
probably not work with most machines, so must be configured to achieve those steps.

module load tools/redis-4.0.8

...

SERVER_HOST=$(head -1 "$PBS_NODEFILE")
let REDIS_PORT="6300 + $QMLA_ID"

cd $LIBRARY_DIR
redis-server RedisDatabaseConfig.conf --protected-mode no --port $REDIS_PORT &
redis-cli -p $REDIS_PORT flushall

When the modifications are finished, QMLA can be launched in parallel similarly to the local version:

source qmla_test/qmla-env/bin/activate

cd qmla_test/QMLA/launch
./parallel_launch.sh

Jobs are likely to queue for some time, depending on the demands on the job scheduler. When all jobs have finished,
results are stored as in the local case, in QMLA/launch/results/Jan_01/01_23, where can be used to generate
a series of automatic analyses.

70 Chapter 6. Tutorial

Quantum Model Learning Agent Documentation, Release 1

6.5 Customising exploration strategies

User interaction with the QMLA codebase should be achieveable primarily through the exploration strategy frame-
work. Throughout the algorithm(s) available, QMLA calls upon the ES before determining how to proceed. The usual
mechanism through which the actions of QMLA are directed, is to set attributes of the ES class: the complete set of
influential attributes are available at ExplorationStrategy.

QMLA directly uses several methods of the ES class, all of which can be overwritten in the course of customising an
ES. Most such methods need not be replaced, however, with the exception of , which is the most important aspect of
any ES: it determines which models are built and tested by QMLA. This method allows the user to impose any logic
desired in constructing models; it is called after the completion of every branch of the exploration tree on the ES.

6.5.1 Greedy search

A first non-trivial ES is to build models greedily from a set of primitive terms, :math:`mathcal{T} = { hat{t} } `. New
models are constructed by combining the previous branch champion with each of the remaining, unused terms. The
process is repeated until no terms remain.

Fig. 6.13: Greedy search mechanism. Left, a set of primitive terms, 𝒯 , are defined in advance. Right, models are
constructed from 𝒯 . On the first branch, the primitve terms alone constitute models. Thereafter, the strongest model
(marked in green) from the previous branch is combined with all the unused terms.

We can compose an ES using these rules, say for

as follows. Note the termination criteria must work in conjunction with the model generation routine. Users can
overwrite the method check tree completed for custom logic, although a straightforward mechanism is to use
the spawn_stage attribute of the ES class: when the final element of this list is , QMLA will terminate the search by
default. Also note that the default termination test checks whether the number of branches (``spawn_step``s) exceeds
the limit , which must be set artifically high to avoid ceasing the search too early, if relying solely on . Here we
demonstrate how to impose custom logic to terminate the seach also.

class ExampleGreedySearch(
exploration_strategy.ExplorationStrategy

):
r"""
From a fixed set of terms, construct models iteratively,
greedily adding all unused terms to separate models at each call to the generate_

→˓models.

(continues on next page)

6.5. Customising exploration strategies 71

Quantum Model Learning Agent Documentation, Release 1

(continued from previous page)

"""

def __init__(
self,
exploration_rules,

**kwargs
):

super().__init__(
exploration_rules=exploration_rules,

**kwargs
)
self.true_model = 'pauliSet_1_x_d3+pauliSet_1J2_yJy_d3+pauliSet_1J2J3_zJzJz_d3

→˓'
self.initial_models = None
self.available_terms = [

'pauliSet_1_x_d3', 'pauliSet_1_y_d3',
'pauliSet_1J2_xJx_d3', 'pauliSet_1J2_yJy_d3'

]
self.branch_champions = []
self.prune_completed_initially = True
self.check_champion_reducibility = False

def generate_models(
self,
model_list,

**kwargs
):

self.log_print([
"Generating models in tiered greedy search at spawn step {}.".format(

self.spawn_step,
)

])
try:

previous_branch_champ = model_list[0]
self.branch_champions.append(previous_branch_champ)

except:
previous_branch_champ = ""

if self.spawn_step == 0 :
new_models = self.available_terms

else:
new_models = greedy_add(

current_model = previous_branch_champ,
terms = self.available_terms

)

if len(new_models) == 0:
Greedy search has exhausted the available models;
send back the list of branch champions and terminate search.
new_models = self.branch_champions
self.spawn_stage.append('Complete')

return new_models

def greedy_add(
(continues on next page)

72 Chapter 6. Tutorial

Quantum Model Learning Agent Documentation, Release 1

(continued from previous page)

current_model,
terms,

):
r"""
Combines given model with all terms from a set.

Determines which terms are not yet present in the model,
and adds them each separately to the current model.

:param str current_model: base model
:param list terms: list of strings of terms which are to be added greedily.
"""

try:
present_terms = current_model.split('+')

except:
present_terms = []

nonpresent_terms = list(set(terms) - set(present_terms))

term_sets = [
present_terms+[t] for t in nonpresent_terms

]

new_models = ["+".join(term_set) for term_set in term_sets]

return new_models

We advise reducing plot_level to 3 to avoid excessive/slow figure generation. This run can be implemented
locally or in parallel as described above, and analysed through the usual analyse.sh script, generating figures in
accordance with the plot_level set by the user in the launch script. Outputs can again be found in the instances
subdirectory, including a map of the models generated (fig:greedy_model_composition), as well as the
branches they reside on, and the Bayes factors between candidates, fig:greedy_branches.

Fig. 6.14: composition_of_models

6.5. Customising exploration strategies 73

Quantum Model Learning Agent Documentation, Release 1

Fig. 6.15: graphs_of_branches_ExampleGreedySearch: shows which models reside on each branches of
the exploration tree. Models are coloured by their F-score, and edges represent the BF between models. The first four
branches are equivalent to those in Fig. 6.13, while the final branch considers the set of branch champions, in order to
determine the overall champion.

6.5.2 Tiered greedy search

We provide one final example of a non-trivial ES: tiered greedy search. Similar to the idea of Greedy search, except
terms are introduced hierarchically: sets of terms 𝒯1, 𝒯2, . . . 𝒯𝑛 are each examined greedily, where the overall strongest
model of one tier forms the seed model for the subsequent tier. A corresponding :term:‘Exploration Strategy‘ is given
as follows.

class ExampleGreedySearchTiered(
exploration_strategy.ExplorationStrategy

):
r"""
Greedy search in tiers.

Terms are batched together in tiers;
tiers are searched greedily;
a single tier champion is elevated to the subsequent tier.

"""

def __init__(
self,
exploration_rules,

**kwargs
):

super().__init__(
exploration_rules=exploration_rules,

**kwargs
)
self.true_model = 'pauliSet_1_x_d3+pauliSet_1J2_yJy_d3+pauliSet_1J2J3_zJzJz_d3

→˓'
self.initial_models = None
self.term_tiers = {

1 : ['pauliSet_1_x_d3', 'pauliSet_1_y_d3', 'pauliSet_1_z_d3'],
2 : ['pauliSet_1J2_xJx_d3', 'pauliSet_1J2_yJy_d3', 'pauliSet_1J2_zJz_d3'],

(continues on next page)

74 Chapter 6. Tutorial

Quantum Model Learning Agent Documentation, Release 1

(continued from previous page)

3 : ['pauliSet_1J2J3_xJxJx_d3', 'pauliSet_1J2J3_yJyJy_d3', 'pauliSet_
→˓1J2J3_zJzJz_d3'],

}
self.tier = 1
self.max_tier = max(self.term_tiers)
self.tier_branch_champs = {k : [] for k in self.term_tiers}
self.tier_champs = {}
self.prune_completed_initially = True
self.check_champion_reducibility = True

def generate_models(
self,
model_list,

**kwargs
):

self.log_print([
"Generating models in tiered greedy search at spawn step {}.".format(

self.spawn_step,
)

])

if self.spawn_stage[-1] is None:
try:

previous_branch_champ = model_list[0]
self.tier_branch_champs[self.tier].append(previous_branch_champ)

except:
previous_branch_champ = None

elif "getting_tier_champ" in self.spawn_stage[-1]:
previous_branch_champ = model_list[0]
self.log_print([

"Tier champ for {} is {}".format(self.tier, model_list[0])
])
self.tier_champs[self.tier] = model_list[0]
self.tier += 1
self.log_print(["Tier now = ", self.tier])
self.spawn_stage.append(None) # normal processing

if self.tier > self.max_tier:
self.log_print(["Completed tree for ES"])
self.spawn_stage.append('Complete')
return list(self.tier_champs.values())

else:
self.log_print([

"Spawn stage:", self.spawn_stage
])

new_models = greedy_add(
current_model = previous_branch_champ,
terms = self.term_tiers[self.tier]

)
self.log_print([

"tiered search new_models=", new_models
])

if len(new_models) == 0:
no models left to find - get champions of branches from this tier

(continues on next page)

6.5. Customising exploration strategies 75

Quantum Model Learning Agent Documentation, Release 1

(continued from previous page)

new_models = self.tier_branch_champs[self.tier]
self.log_print([

"tier champions: {}".format(new_models)
])
self.spawn_stage.append("getting_tier_champ_{}".format(self.tier))

return new_models

def check_tree_completed(
self,
spawn_step,

**kwargs
):

r"""
QMLA asks the exploration tree whether it has finished growing;
the exploration tree queries the exploration strategy through this method
"""
if self.tree_completed_initially:

return True
elif self.spawn_stage[-1] == "Complete":

return True
else:

return False

def greedy_add(
current_model,
terms,

):
r"""
Combines given model with all terms from a set.

Determines which terms are not yet present in the model,
and adds them each separately to the current model.

:param str current_model: base model
:param list terms: list of strings of terms which are to be added greedily.
"""

try:
present_terms = current_model.split('+')

except:
present_terms = []

nonpresent_terms = list(set(terms) - set(present_terms))

term_sets = [
present_terms+[t] for t in nonpresent_terms

]

new_models = ["+".join(term_set) for term_set in term_sets]

return new_models

with corresponding results in [fig:example_es_tiered_greedy].

76 Chapter 6. Tutorial

Quantum Model Learning Agent Documentation, Release 1

Fig. 6.16: composition_of_models

Fig. 6.17: graphs_of_branches_ExampleGreedySearchTiered: shows which models reside on each
branches of the exploration tree. Models are coloured by their F-score, and edges represent the BF between mod-
els. In each tier, three branches greedily add terms, and a fourth branch considers the champions of the first three
branches in order to nominate a tier champion. The final branch consists only of the tier champions, to nominate the
global champion, 𝐻̂ ′.

6.5. Customising exploration strategies 77

Quantum Model Learning Agent Documentation, Release 1

78 Chapter 6. Tutorial

CHAPTER

SEVEN

BIBLOGRAPHY

79

Quantum Model Learning Agent Documentation, Release 1

80 Chapter 7. Biblography

BIBLIOGRAPHY

[WGFC13a] Wiebe N., Granade C. E., Ferrie C. & Cory D. G. Hamiltonian Learning and Certification Using Quantum
Resources. arXiv:1309.0876

[WGFC13b] Wiebe N., Granade C. E., Ferrie C. & Cory D. G. Quantum Hamiltonian Learning Using Imperfect
Quantum Resources. arXiv:1311.5269

[GFWC12] Granade C. E., Ferrie C., Wiebe N. & Cory D. G. Robust online Hamiltonian learning. New Journal of
Physics 14 103013 (2012). :doi:`10.1088/1367-2630/14/10/103013`. arXiv:1207.1655.

[QInfer] Granade, Christopher, et al. “QInfer: Statistical inference software for quantum applications.” Quantum
1 (2017): 5. https://github.com/QInfer/python-qinfer

[GFK20] Gentile, Andreas A., Flynn, Brian, et al. “Learning models of quantum systems from experiments”.
arXiv:2002.06169

[SCG13] Smeltzer, Benjamin and Childress, Lilian and Gali, Adam. 13C hyperfine interactions in the nitrogen-
vacancy centre in diamond. New Journal of Physics 13 025021 (2013).

[QMLA] Flynn, Brian. Quantum Model Learning Agent. https://github.com/flynnbr11/QMLA

81

https://arxiv.org/abs/2002.061691309.0876
https://arxiv.org/abs/2002.061691311.5269
https://arxiv.org/abs/2002.061691207.1655
https://github.com/QInfer/python-qinfer
https://arxiv.org/abs/2002.061692002.06169
https://github.com/flynnbr11/QMLA

Quantum Model Learning Agent Documentation, Release 1

82 Bibliography

PYTHON MODULE INDEX

q
qmla, ??

83

Quantum Model Learning Agent Documentation, Release 1

84 Python Module Index

INDEX

Symbols
__plot_gene_pool_progression()

(qmla.exploration_strategies.genetic_algorithms.genetic_exploration_strategy.Genetic
method), 57

_check_model_exists()
(qmla.QuantumModelLearningAgent method),
19

_compile_and_store_qmla_info_summary()
(qmla.QuantumModelLearningAgent method),
19

_compute_base_resources()
(qmla.QuantumModelLearningAgent method),
20

_consider_new_model()
(qmla.QuantumModelLearningAgent method),
20

_consider_reallocate_resources()
(qmla.ModelInstanceForLearning method),
34

_delete_unpicklable_attributes()
(qmla.QuantumModelLearningAgent method),
20

_finalise_learning()
(qmla.ModelInstanceForLearning method),
34

_fundamental_settings()
(qmla.QuantumModelLearningAgent method),
20

_get_model_data_by_field()
(qmla.QuantumModelLearningAgent method),
20

_get_secular_approx_true_params()
(qmla.exploration_strategies.nv_centre_spin_characterisation.nature_physics_2021.NVCentreGenticAlgorithmPrelearnedParameters
method), 53

_initialise_model_for_learning()
(qmla.ModelInstanceForLearning method),
34

_initialise_tracking_infrastructure()
(qmla.ModelInstanceForLearning method), 34

_inspect_remote_job_crashes()
(qmla.QuantumModelLearningAgent method),
20

_model_plots_old()
(qmla.ModelInstanceForLearning method),
34

_plot_bayes_factors()
(qmla.QuantumModelLearningAgent method),
20

_plot_branch_champions_dynamics()
(qmla.QuantumModelLearningAgent method),
20

_plot_branch_champs_quadratic_losses()
(qmla.QuantumModelLearningAgent method),
20

_plot_branch_champs_volumes()
(qmla.QuantumModelLearningAgent method),
20

_plot_correlation_fitness_with_f_score()
(qmla.exploration_strategies.genetic_algorithms.genetic_exploration_strategy.Genetic
method), 57

_plot_distributions()
(qmla.ModelInstanceForLearning method),
34

_plot_dynamics() (qmla.ModelInstanceForLearning
method), 35

_plot_dynamics_all_models_on_branches()
(qmla.QuantumModelLearningAgent method),
21

_plot_evaluation_normalisation_records()
(qmla.QuantumModelLearningAgent method),
21

_plot_exploration_tree()
(qmla.QuantumModelLearningAgent method),
21

_plot_fitness_v_fscore()
(qmla.exploration_strategies.genetic_algorithms.genetic_exploration_strategy.Genetic
method), 57

_plot_fitness_v_fscore_by_generation()
(qmla.exploration_strategies.genetic_algorithms.genetic_exploration_strategy.Genetic
method), 57

_plot_fitness_v_generation()
(qmla.exploration_strategies.genetic_algorithms.genetic_exploration_strategy.Genetic
method), 57

_plot_gene_pool()

85

Quantum Model Learning Agent Documentation, Release 1

(qmla.exploration_strategies.genetic_algorithms.genetic_exploration_strategy.Genetic
method), 57

_plot_learning_summary()
(qmla.ModelInstanceForLearning method),
35

_plot_model_ratings()
(qmla.exploration_strategies.genetic_algorithms.genetic_exploration_strategy.Genetic
method), 57

_plot_model_terms()
(qmla.QuantumModelLearningAgent method),
21

_plot_one_qubit_probes_bloch_sphere()
(qmla.QuantumModelLearningAgent method),
21

_plot_parameter_learning_champion()
(qmla.QuantumModelLearningAgent method),
21

_plot_parameter_learning_single_model()
(qmla.QuantumModelLearningAgent method),
21

_plot_parameter_learning_true()
(qmla.QuantumModelLearningAgent method),
21

_plot_posterior_mesh_pairwise()
(qmla.ModelInstanceForLearning method),
35

_plot_preliminary_preparation()
(qmla.ModelInstanceForLearning method),
35

_plot_qmla_radar_scores()
(qmla.QuantumModelLearningAgent method),
21

_plot_r_squared_by_epoch_for_model_list()
(qmla.QuantumModelLearningAgent method),
21

_plot_selection_probabilities()
(qmla.exploration_strategies.genetic_algorithms.genetic_exploration_strategy.Genetic
method), 57

_plot_volume_after_qhl()
(qmla.QuantumModelLearningAgent method),
21

_potentially_redundant_setup()
(qmla.QuantumModelLearningAgent method),
22

_record_experiment_updates()
(qmla.ModelInstanceForLearning method),
35

_set_learning_and_comparison_parameters()
(qmla.QuantumModelLearningAgent method),
22

_set_true_params()
(qmla.exploration_strategies.nv_centre_spin_characterisation.nature_physics_2021.NVCentreGenticAlgorithmPrelearnedParameters
method), 53

_setup_available_terms_gali_model()

(qmla.exploration_strategies.nv_centre_spin_characterisation.nature_physics_2021.NVCentreGenticAlgorithmPrelearnedParameters
method), 53

_setup_parallel_requirements()
(qmla.QuantumModelLearningAgent method),
22

_setup_prior_by_parameters()
(qmla.exploration_strategies.nv_centre_spin_characterisation.nature_physics_2021.NVCentreGenticAlgorithmPrelearnedParameters
method), 53

_setup_qinfer_infrastructure()
(qmla.ModelInstanceForLearning method),
35

_setup_tree_and_exploration_strategies()
(qmla.QuantumModelLearningAgent method),
22

_store_prior() (qmla.ModelInstanceForLearning
method), 35

_true_model_definition()
(qmla.QuantumModelLearningAgent method),
22

_update_database_model_info()
(qmla.QuantumModelLearningAgent method),
22

A
add_model_to_database()

(qmla.QuantumModelLearningAgent method),
22

alph() (in module qmla), 28
analyse_generation()

(qmla.exploration_strategies.genetic_algorithms.genetic_exploration_strategy.Genetic
method), 58

analyse_instance()
(qmla.QuantumModelLearningAgent method),
22

are_models_valid()
(qmla.shared_functionality.qinfer_model_interface.QInferModelQMLA
method), 47

B
basic_pair_selection()

(qmla.shared_functionality.genetic_algorithm.GeneticAlgorithmQMLA
method), 55

Bayes factor, 1
BF, 1
BranchQMLA (class in qmla), 31

C
check_champion_reducibility()

(qmla.QuantumModelLearningAgent method),
22

check_tree_completed()
(qmla.exploration_strategies.ExplorationStrategy
method), 40

86 Index

Quantum Model Learning Agent Documentation, Release 1

check_tree_completed()
(qmla.exploration_strategies.genetic_algorithms.genetic_exploration_strategy.Genetic
method), 58

check_tree_completed()
(qmla.exploration_strategies.nv_centre_spin_characterisation.TieredGreedySearchNVCentre
method), 52

check_tree_pruned()
(qmla.exploration_strategies.genetic_algorithms.genetic_exploration_strategy.Genetic
method), 58

chromosome_f_score()
(qmla.shared_functionality.genetic_algorithm.GeneticAlgorithmQMLA
method), 55

chromosome_string()
(qmla.shared_functionality.genetic_algorithm.GeneticAlgorithmQMLA
method), 55

compare_model_pair()
(qmla.QuantumModelLearningAgent method),
22

compare_model_set()
(qmla.QuantumModelLearningAgent method),
23

compare_models_within_branch()
(qmla.QuantumModelLearningAgent method),
23

compare_nominated_champions()
(qmla.QuantumModelLearningAgent method),
23

compute_expectation_values()
(qmla.ModelInstanceForStorage method),
37

compute_likelihood_after_parameter_learning()
(qmla.ModelInstanceForLearning method), 35

compute_model_f_score()
(qmla.QuantumModelLearningAgent method),
24

compute_statistical_metrics_by_generation()
(qmla.QuantumModelLearningAgent method),
24

consolidate_generation()
(qmla.shared_functionality.genetic_algorithm.GeneticAlgorithmQMLA
method), 55

ControlsQMLA (class in qmla), 28
crossover() (qmla.shared_functionality.genetic_algorithm.GeneticAlgorithmQMLA

method), 55

D
default_expectation_value() (in module

qmla.shared_functionality.expectation_value_functions),
45

design_experiment()
(qmla.shared_functionality.experiment_design_heuristics.ExperimentDesignHueristic
method), 45

E
EDH, 1
element_wise_mutation()

(qmla.shared_functionality.genetic_algorithm.GeneticAlgorithmQMLA
method), 55

elite_ranking_top_n_models()
(qmla.shared_functionality.genetic_algorithm.GeneticAlgorithmQMLA
method), 55

ES, 1
ET, 1
Experiment Design Heuristic, 1
ExperimentDesignHueristic (class in

qmla.shared_functionality.experiment_design_heuristics),
44

Exploration Strategy, 1
Exploration Tree, 1
exploration_strategy_finalise()

(qmla.exploration_strategies.ExplorationStrategy
method), 40

exploration_strategy_finalise()
(qmla.exploration_strategies.genetic_algorithms.genetic_exploration_strategy.Genetic
method), 58

ExplorationStrategy (class in
qmla.exploration_strategies), 40

ExplorationTree (class in qmla), 30
expparams_dtype()

(qmla.shared_functionality.qinfer_model_interface.QInferModelQMLA
property), 47

F
f_score_from_chromosome_string()

(qmla.exploration_strategies.genetic_algorithms.genetic_exploration_strategy.Genetic
method), 58

f_score_model_comparison()
(qmla.exploration_strategies.genetic_algorithms.genetic_exploration_strategy.Genetic
method), 58

fermi_hubbard_latex() (in module
qmla.shared_functionality.latex_model_names),
49

finalise_heuristic()
(qmla.shared_functionality.experiment_design_heuristics.ExperimentDesignHueristic
method), 45

finalise_qmla() (qmla.QuantumModelLearningAgent
method), 24

finalise_tree() (qmla.ExplorationTree method),
30

FullAccessNVCentre (class in
qmla.exploration_strategies.nv_centre_spin_characterisation),
51

G
gaussian_prior() (in module

qmla.shared_functionality.prior_distributions),
46

Index 87

Quantum Model Learning Agent Documentation, Release 1

gaussian_prior() (qmla.exploration_strategies.ExplorationStrategy
method), 40

gene_pool_progression()
(qmla.exploration_strategies.genetic_algorithms.genetic_exploration_strategy.Genetic
static method), 58

generate_evaluation_data()
(qmla.exploration_strategies.nv_centre_spin_characterisation.nature_physics_2021.NVCentreGenticAlgorithmPrelearnedParameters
method), 53

generate_models()
(qmla.exploration_strategies.ExplorationStrategy
method), 41

generate_models()
(qmla.exploration_strategies.genetic_algorithms.genetic_exploration_strategy.Genetic
method), 58

generate_models()
(qmla.exploration_strategies.nv_centre_spin_characterisation.FullAccessNVCentre
method), 51

generate_models()
(qmla.exploration_strategies.nv_centre_spin_characterisation.TieredGreedySearchNVCentre
method), 52

generate_plot_probes()
(qmla.exploration_strategies.ExplorationStrategy
method), 41

generate_probes()
(qmla.exploration_strategies.ExplorationStrategy
method), 42

Genetic (class in qmla.exploration_strategies.genetic_algorithms.genetic_exploration_strategy),
57

genetic_algorithm_step()
(qmla.shared_functionality.genetic_algorithm.GeneticAlgorithmQMLA
method), 55

GeneticAlgorithmQMLA (class in
qmla.shared_functionality.genetic_algorithm),
54

get_base_chromosome()
(qmla.shared_functionality.genetic_algorithm.GeneticAlgorithmQMLA
method), 55

get_constituent_names_from_name() (in
module qmla), 28

get_elite_models()
(qmla.shared_functionality.genetic_algorithm.GeneticAlgorithmQMLA
method), 56

get_evaluation_prior()
(qmla.exploration_strategies.nv_centre_spin_characterisation.nature_physics_2021.NVCentreGenticAlgorithmPrelearnedParameters
method), 53

get_expectation_value()
(qmla.exploration_strategies.ExplorationStrategy
method), 42

get_exploration_class() (in module qmla), 29,
44

get_heuristic() (qmla.exploration_strategies.ExplorationStrategy
method), 43

get_initial_models() (qmla.ExplorationTree
method), 30

get_measurements_by_time()
(qmla.exploration_strategies.ExplorationStrategy
method), 43

get_measurements_by_time()
(qmla.exploration_strategies.nv_centre_spin_characterisation.NVCentreExperimentalData
method), 51

get_model_storage_instance_by_id()
(qmla.QuantumModelLearningAgent method),
24

get_num_qubits() (in module qmla), 28
get_pair_selection_order()

(qmla.shared_functionality.genetic_algorithm.GeneticAlgorithmQMLA
method), 56

get_prior() (qmla.exploration_strategies.ExplorationStrategy
method), 43

get_prior() (qmla.exploration_strategies.nv_centre_spin_characterisation.nature_physics_2021.NVCentreGenticAlgorithmPrelearnedParameters
method), 53

get_qinfer_model()
(qmla.exploration_strategies.ExplorationStrategy
method), 43

get_redis_databases_by_qmla_id() (in mod-
ule qmla), 32

get_results_dict()
(qmla.QuantumModelLearningAgent method),
24

get_seed() (in module qmla), 33
get_selection_probabilities()

(qmla.shared_functionality.genetic_algorithm.GeneticAlgorithmQMLA
method), 56

get_simulator_pr0_array()
(qmla.shared_functionality.qinfer_model_interface.QInferModelQMLA
method), 47

get_system_pr0_array()
(qmla.shared_functionality.qinfer_model_interface.QInferModelQMLA
method), 48

get_true_parameters()
(qmla.exploration_strategies.ExplorationStrategy
method), 43

global champion, 1
grouped_pauli_terms() (in module

qmla.shared_functionality.latex_model_names),
49

H
hamming_distance_model_comparison()

(qmla.exploration_strategies.genetic_algorithms.genetic_exploration_strategy.Genetic
method), 58

I
Instance, 1
is_tree_complete() (qmla.ExplorationTree

method), 30

88 Index

Quantum Model Learning Agent Documentation, Release 1

L
latex_name() (qmla.exploration_strategies.ExplorationStrategy

method), 43
learn_model() (qmla.QuantumModelLearningAgent

method), 24
learn_models_on_given_branch()

(qmla.QuantumModelLearningAgent method),
24

learn_models_until_trees_complete()
(qmla.QuantumModelLearningAgent method),
25

learned_info_dict()
(qmla.ModelInstanceForLearning method),
35

likelihood() (qmla.shared_functionality.qinfer_model_interface.QInferModelQMLA
method), 48

log_print() (qmla.ControlsQMLA method), 28
log_print() (qmla.ExplorationTree method), 30
log_print() (qmla.ModelInstanceForComparison

method), 36
log_print() (qmla.ModelInstanceForLearning

method), 35
log_print() (qmla.ModelInstanceForStorage

method), 37
log_print() (qmla.QuantumModelLearningAgent

method), 25
log_print() (qmla.shared_functionality.experiment_design_heuristics.ExperimentDesignHueristic

method), 45
log_print() (qmla.shared_functionality.genetic_algorithm.GeneticAlgorithmQMLA

method), 56
log_print() (qmla.shared_functionality.qinfer_model_interface.QInferModelQMLA

method), 49
log_print_debug()

(qmla.ModelInstanceForComparison method),
36

log_print_debug()
(qmla.ModelInstanceForLearning method),
35

log_print_debug()
(qmla.shared_functionality.qinfer_model_interface.QInferModelQMLA
method), 49

M
map_chromosome_to_model()

(qmla.shared_functionality.genetic_algorithm.GeneticAlgorithmQMLA
method), 56

map_model_to_chromosome()
(qmla.shared_functionality.genetic_algorithm.GeneticAlgorithmQMLA
method), 56

model_f_score() (qmla.shared_functionality.genetic_algorithm.GeneticAlgorithmQMLA
method), 56

model_update_learned_values()
(qmla.ModelInstanceForStorage method),
37

ModelInstanceForComparison (class in qmla),
36

ModelInstanceForLearning (class in qmla), 33
ModelInstanceForStorage (class in qmla), 37
modelparam_names()

(qmla.shared_functionality.qinfer_model_interface.QInferModelQMLA
property), 49

module
qmla, 1

mutation() (qmla.shared_functionality.genetic_algorithm.GeneticAlgorithmQMLA
method), 56

N
n_modelparams() (qmla.shared_functionality.qinfer_model_interface.QInferModelQMLA

property), 49
n_outcomes() (qmla.shared_functionality.qinfer_model_interface.QInferModelQMLA

method), 49
name_branch_map()

(qmla.exploration_strategies.ExplorationStrategy
method), 43

new_branch() (qmla.QuantumModelLearningAgent
method), 25

new_branch_on_tree() (qmla.ExplorationTree
method), 30

next_layer() (qmla.ExplorationTree method), 30
nominate_champions()

(qmla.exploration_strategies.genetic_algorithms.genetic_exploration_strategy.Genetic
method), 58

nominate_champions() (qmla.ExplorationTree
method), 31

NVCentreExperimentalData (class in
qmla.exploration_strategies.nv_centre_spin_characterisation),
51

NVCentreGenticAlgorithmPrelearnedParameters
(class in qmla.exploration_strategies.nv_centre_spin_characterisation.nature_physics_2021),
52

O
one_point_crossover()

(qmla.shared_functionality.genetic_algorithm.GeneticAlgorithmQMLA
method), 56

P
pauli_set_latex_name() (in module

qmla.shared_functionality.latex_model_names),
49

plot_dynamics() (qmla.ModelInstanceForComparison
method), 36

plot_dynamics_from_models() (in module
qmla.remote_bayes_factor), 39

plot_dynamics_of_true_model()
(qmla.exploration_strategies.ExplorationStrategy
method), 43

Index 89

Quantum Model Learning Agent Documentation, Release 1

plot_generational_metrics()
(qmla.exploration_strategies.genetic_algorithms.genetic_exploration_strategy.Genetic
method), 58

plot_heuristic_attributes()
(qmla.shared_functionality.experiment_design_heuristics.ExperimentDesignHueristic
method), 45

plot_instance_outcomes()
(qmla.QuantumModelLearningAgent method),
26

prepare_chromosome_pair_dataframe()
(qmla.shared_functionality.genetic_algorithm.GeneticAlgorithmQMLA
method), 56

print_to_log() (in module qmla), 33
Probe, 1
process_basic_operator() (in module qmla), 29
process_comparisons_within_branch()

(qmla.QuantumModelLearningAgent method),
26

process_model_pair_comparison()
(qmla.QuantumModelLearningAgent method),
26

process_model_set_comparisons()
(qmla.QuantumModelLearningAgent method),
26

Q
QHL, 2
QInferModelQMLA (class in

qmla.shared_functionality.qinfer_model_interface),
46

QLE, 2
QMLA, 2
qmla

module, 1
Quantum Hamiltonian Learning, 2
Quantum Likelihood Estimation, 2
Quantum Model Learning Agent, 2
QuantumModelLearningAgent (class in qmla), 19

R
r_squared() (qmla.ModelInstanceForStorage

method), 37
r_squared_by_epoch()

(qmla.ModelInstanceForStorage method),
38

rand_model_f() (qmla.shared_functionality.genetic_algorithm.GeneticAlgorithmQMLA
method), 56

random_initial_models()
(qmla.shared_functionality.genetic_algorithm.GeneticAlgorithmQMLA
method), 56

random_models_sorted_by_f_score()
(qmla.shared_functionality.genetic_algorithm.GeneticAlgorithmQMLA
method), 57

remote_bayes_factor_calculation() (in
module qmla), 39

remote_learn_model_parameters() (in mod-
ule qmla), 38

Run, 2
Run Results Directory, 2
run_complete_qmla()

(qmla.QuantumModelLearningAgent method),
26

run_quantum_hamiltonian_learning()
(qmla.QuantumModelLearningAgent method),
27

run_quantum_hamiltonian_learning_multiple_models()
(qmla.QuantumModelLearningAgent method),
27

S
selection() (qmla.shared_functionality.genetic_algorithm.GeneticAlgorithmQMLA

method), 57
set_shared_parameters() (in module qmla), 31
set_specific_plots()

(qmla.exploration_strategies.ExplorationStrategy
method), 43

set_specific_plots()
(qmla.exploration_strategies.genetic_algorithms.genetic_exploration_strategy.Genetic
method), 58

SimulatedExperimentNVCentre (class in
qmla.exploration_strategies.nv_centre_spin_characterisation),
52

spawn_from_branch()
(qmla.QuantumModelLearningAgent method),
27

store_bayes_factors_to_csv()
(qmla.QuantumModelLearningAgent method),
27

store_bayes_factors_to_shared_csv()
(qmla.QuantumModelLearningAgent method),
27

System, 2

T
TieredGreedySearchNVCentre (class in

qmla.exploration_strategies.nv_centre_spin_characterisation),
52

tree_pruning() (qmla.exploration_strategies.ExplorationStrategy
method), 44

True Model, 2
true_model_latex()

(qmla.exploration_strategies.ExplorationStrategy
method), 44

true_model_terms()
(qmla.exploration_strategies.ExplorationStrategy
property), 44

90 Index

Quantum Model Learning Agent Documentation, Release 1

truncate_to_top_half()
(qmla.shared_functionality.genetic_algorithm.GeneticAlgorithmQMLA
method), 57

U
update_branch() (qmla.BranchQMLA method), 31
update_log_likelihood()

(qmla.ModelInstanceForComparison method),
37

update_model() (qmla.ModelInstanceForLearning
method), 35

Index 91

	Glossary
	Overview
	Models
	Model Training
	Model Comparison
	Structure
	Outputs
	User Interface

	User Guide
	Quantum Model Learning Agent
	Exploration Strategy
	Models
	Construction
	Classes
	Training
	Comparisons
	Storage

	Modular functionality
	Probes
	Experiment design heuristic
	QInfer interface
	Prior distribution
	Latex name mapping

	Output and Analysis
	Launch
	Redis server

	API Reference
	Quantum Model Learning Agent
	Manager class

	Logistics
	User controls
	Database framework
	Model Generation
	String to matrix processing
	Initialising Exploration Strategy
	Trees and branches
	Parameter definition
	Redis
	Logging

	Models
	Model for training
	Model for comparisons
	Model for storage

	Implementation
	Model learning
	Model comparison

	Exploration Strategies
	Modular functionality
	Experiment Design Hueristics
	Expectation Values
	Prior probability distributions
	QInfer Interface
	Latex name mapping

	Applications
	NV centre characterisation
	Greedy search
	Genetic algorithm for spin bath

	Genetic Algorithms
	Genetic Exploration Strategy

	Tutorial
	Installation
	Custom exploration strategy
	Analysis
	Model analysis
	Instance analysis
	Run analysis

	Parallel implementation
	Customising exploration strategies
	Greedy search
	Tiered greedy search

	Biblography
	Bibliography
	Python Module Index
	Index

